Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2021, 9(1), 8-14
DOI: 10.12691/AJWR-9-1-2
Original Research

Study of the Effect of Nickel Nano Particles and pH on the Photo-degradation of Congo Red

Kazi Mohammad Anamoul Haque1,

1Department of Arts and Sciences, Bangladesh Army University of Science and Technology (BAUST), Saidpur Cantonment, Nilphamary, Bangladesh

Pub. Date: March 05, 2021

Cite this paper

Kazi Mohammad Anamoul Haque. Study of the Effect of Nickel Nano Particles and pH on the Photo-degradation of Congo Red. American Journal of Water Resources. 2021; 9(1):8-14. doi: 10.12691/AJWR-9-1-2

Abstract

Nickel nano particles were synthesized by chemical reduction method using nickel chloride as precursor, hydrazine as reducing agent in a basic medium in presence of surfactant sodium dodecylsulphonate (SDS) and polymer polyvinylpyrolidone (PVP). Titanium dioxide conventionally used as a photo-catalyst for the degradation of Congo red – water pollutant largely used as a dye in textile industries [the line is not match]. Synthesized nickel nano particles of different sizes were mechanically [need specific mechanical process] mixed with titanium dioxide. Measuring the absorbance of congo red solution, congo red solution mixed with titanium dioxide and titanium dioxide with nickel nano particles of different sizes using UV-Vis spectrophotometer, it was found that nickel nano particles accelerate the rate of photo degradation of congo red when it was mixed with titanium dioxide [this sentence is to large]. It was found that with decreasing the size of the nickel nano particles the rate of degradation increases [Need some hypothetical logic for decreasing the size of the nickel nano particles the rate of degradation increases]. Experimental results also show that there is an effect of pH of the solution. The rate of degradation is higher in acidic medium (pH 5.7) instead of basic medium (pH 8) [These two sentences may be merged].

Keywords

Photo catalyst, absorbance, degradation, UV-Vis, Titanium dioxide, Nickel nanoparticles

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  M. Dakiky, I. Nemcova, “Aggregation of o,o′- Dihydroxy azo Dyes III. Effect of cationic, anionic and non-ionic surfactants on the electronic spectra of 2-hydroxy-5-nitrophenylazo-4-[3-methyl-1-(4″-sulfophenyl)-5-pyrazolone]” Dyes Pigments 44, 181, 2000.
 
[2]  M. A. Brown, S. C. De. vito, C. Rev, Predicting azo dye toxicity, Environ. Sc. Technoi. 23, 249, 1993.
 
[3]  D. Rajkumar, J.G. Kim, Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment, J. Hazard. Mater, 136, 203-212, 2003.
 
[4]  S.K. Kang, H. M. Chang, Coagulation of textile secondary effluents with Fenton’s reagent, Water Sci. Technol, 72, 215, 1997.
 
[5]  Vanitha Katheresan, Jibrail Kansedo, John Lau Sie Yon, “Efficiency of Various Recent Wastewater Dye Removal Methods: A Review” Journal of Environmental Chemical Engineering. 6(4), 2018.
 
[6]  Meenakshisundaram Swaminathan, Manickavachagam Muruganandham, and Mika Sillanpaa, “Advanced Oxidation Processes for Wastewater Treatment”. International Journal of Photoenergy, 2013, 3, 2013.
 
[7]  M.A. Fox, M.T. Dulay, Heterogenous Photocatalysis, Chem. Rev. 93, 341, 1993.
 
[8]  M. Movahedi, A.R. Mahjoub and S. Janitabar-Darzi, Photodegradation of Congo Red in Aqueous Solution on ZnO as an Alternative Catalyst to TiO2, J. Iran. Chem. Soc., 6(3), 570, 2009.
 
[9]  R. J. Gonzalez, R. Zallen, H. Berger, Infrared reflectivity and lattice fundamentals in anatase TiO2S, Phys. Reov. B 55, 7014, 1997.
 
[10]  A. Pottier, C. Chance, E. Tronc, L. Mazerroles, J. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous solution, J. Mater. Chem. 11, 1116, 2001.
 
[11]  H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.M. Hermann, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl red, Congo red, Methylene blue) in water by UV-irradiated titania , Appl. Catal. B: Environ. 39, 75, 2002.
 
[12]  W. Choi, A. Termin, M.R. Hoffmann, Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics, J. Phys. Chem. 98, 13669, 1994.
 
[13]  R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Vissible-Light Photocatlysis in Nitrogen -Doped Titanium Oxide, Science 293, 269, 2001.
 
[14]  A.R. Gandhe, J.B. Fernandes, A Simple Method of Synthesized N- doped rutile titania with enhanced photocatalytic activity in sun light, J. Solid State Chem. 178, 2953, 2005.
 
[15]  R.J. Gonzalez, R. Zallen, H. Berger, Phys. Reov. B 55, 7014, 199.7
 
[16]  T. Ohno, K. Tokieda, S. Higashida, M. Matsumura, Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A: Gen. 244, 383, 2003.
 
[17]  B. Sun, P.G. Smirniotis, Interaction of anatase and rutile TiO2 in aqueous photooxidation Catal. Today 88, 49, 2003.
 
[18]  C.B. Almquist, P. Biswas, Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity, J. Catal. 212, 145, 2000.
 
[19]  R. K. Wahi, W.W. Yu, Y. Liu, M.L. Mejia, J.C. Falkner, W. Nolte, V.L. Colvin, Photodegradation of congo Red catalyzed by nanosized TiO2, J Mol Catal A: Chem,242(1-2), 48, 2005.
 
[20]  K. Chiang, T.M. Lim, L. Tsen, C.C. Lee, “Photocatalytic degradation and mineralization of bisphenol A by TiO2 and platinized TiO2”, Appl. Catal. A: 26(2), 225-237, 2004.
 
[21]  N. Sobana, M. Muruganadham, M. Swaminathan, “Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes”, J. Mol. Catal. A: Chem. 258(2), 124-132, 2006.
 
[22]  A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, “Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17”, J. Hazard.Mater. vol. 147, (3) 906-913, 2007.
 
[23]  A. Scalafani, J. Herrmann, “Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media”, J. Photochem. Photobiol. A: Chem., 113(2), 181-188, 1998.
 
[24]  X. Fu, LA. Clark, Q.Yang. M.A., Anderson “Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2”, Environ. Sci. Technol. 30(2), 647-653, 1996.
 
[25]  Khaled Melghit and Salma S. Al-Rabaniah, “Photodegradation of Congo red under sunlight catalysed by nanorod rutile TiO2”, Journal of photochemistry and photobiology:A Chemistry 184, 331-334, 2006.
 
[26]  H. R. Pouretedal and M. H. Keshavarz, “Study of Congo red photodegradation kinetic catalyzed by Zn1-XCuXS and Zn1-XNiXS nanoparticles”, International Journal of the Physical Sciences, 6(27), 6268-6279, 2011.
 
[27]  A. López–Vásquez, D. Santaamaria, M. Tibata and C Gomez, “Congo red photo catalytic Decolourization using Modified Titenium”, World Academy of Science, Engineering and Technology 71, 2010.