Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2020, 8(1), 38-47
DOI: 10.12691/AJWR-8-1-5
Original Research

Multiple Morphometric Characterization and Analysis of Malakan Valley Drainage Basin Using GIS and Remote Sensing, Kurdistan Region, Iraq

Rahel Hamad1, 2,

1GIS and Remote Sensing Department, Scientific Research Centre (SRC), Delzyan Campus, Soran University, Soran 44008, Erbil, Iraq

2Department of Petroleum Geosciences, Faculty of Science, Delzyan Campus, Soran University, Soran 44008, Erbil, Iraq

Pub. Date: February 09, 2020

Cite this paper

Rahel Hamad. Multiple Morphometric Characterization and Analysis of Malakan Valley Drainage Basin Using GIS and Remote Sensing, Kurdistan Region, Iraq. American Journal of Water Resources. 2020; 8(1):38-47. doi: 10.12691/AJWR-8-1-5

Abstract

The morphometric analysis of a drainage system is necessary in understanding the hydrological behavior of the watersheds. Agricultural development, through the investigations of the watersheds by using Remote Sensing (RS) and Geographic Information System (GIS) techniques can be a dynamic contributor to the economy and growth of the Kurdistan Region (KRG) that on long run can enhance the political and economic stability. The Shuttle Radar Topographic Mission (SRTM) was used to prepare Digital Elevation Model (DEM) for evaluation of morphometric components. Various aspects such as linear, areal, and relief morphometric parameters were calculated using hydrological tool and slope-aspect in ArcGIS. The current study shows that the integration of RS and GIS is an effective approach for analyzing the morphometric pattern and land use change. Future investigation will focus broaden over all sub-watersheds of the current study giving more importance to land use in the watersheds.

Keywords

agriculture, linear, areal, relief, herringbone, patter

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Liu, J., et al., Water scarcity assessments in the past, present, and future. Earth's future, 2017. 5(6): p. 545-559.
 
[2]  Environment, A., Facts about water in Alberta. 2010, Alberta Environment Edmonton Alberta.
 
[3]  Joshi, P., et al., Socioeconomic and policy research on watershed management in India: synthesis of past experiences and needs for future research. Journal of SAT Agricultural Research, 2006. 2(1): p. 1-81.
 
[4]  Pimentel, D., et al., Water resources: agricultural and environmental issues. BioScience, 2004. 54(10): p. 909-918.
 
[5]  Charney, A.H. and G.C. Woodard, Socioeconomic impacts of water farming on rural areas of origin in Arizona. American Journal of Agricultural Economics, 1990. 72(5): p. 1193-1199.
 
[6]  Cervantes-Godoy, D. and J. Dewbre, Economic importance of agriculture for poverty reduction. 2010.
 
[7]  Hamad, R., K. Kolo, and H. Balzter, Land Cover Changes Induced by Demining Operations in Halgurd-Sakran National Park in the Kurdistan Region of Iraq. Sustainability, 2018. 10(7): p. 2422.
 
[8]  FAO, Socio-economic context and role of agriculture. Prevalence, 2016. 2011: p. 5.
 
[9]  de Haen, H., P. Shetty, and A. Marx, The State of Food Insecurity in the World 2005: Eradicating World Hunger: Key to Achieving the Millennium Development Goals. Rome: FAO, 2005.
 
[10]  Adhikary, P. and C.J. Dash, Morphometric analysis o f Katra Watershed of Eastern Ghats: A GIS approach. Int. J. Curr. Microbiol. App. Sci, 2018. 7(3): p. 1651-1665.
 
[11]  Yassin, F., et al., Hydrologic-Land Surface Modelling of a Complex System under Precipitation Uncertainty: A Case Study of the Saskatchewan River Basin, Canada. 2019.
 
[12]  Ruiz, M.E. and H. Medina, Soil hydraulic properties of Cuban soils. 2004.
 
[13]  Radwan, F., A. Alazba, and A. Mossad, Watershed morphometric analysis of Wadi Baish Dam catchment area using integrated GIS-based approach. Arabian Journal of Geosciences, 2017. 10(12): p. 256.
 
[14]  Biswas, S., Analysis of GIS based morphometric parameters and hydrological changes in Parbati River basin, Himachal Pradesh, India. Journal of Geography & Natural Disasters, 2016. 6(2): p. 1-8.
 
[15]  Rai, P.K., et al., Geospatial Approach for Quantitative Drainage Morphometric Analysis of Varuna River Basin, India. Journal of Landscape Ecology, 2019. 12(2): p. 1-25.
 
[16]  Patil, N., A. Kadale, and G. Mhetre, Assessment of Morphometric Characteristics of Karwadi-Nandapur Micro Watershed Using Remote Sensing and Geographical Information System. International Journal of Scientific & Technology Research, 2015. 4(4): p. 175-179.
 
[17]  Bragança, A., The Economic Consequences of the Agricultural Expansion in Matopiba. Revista Brasileira de Economia, 2018. 72(2): p. 161-185.
 
[18]  Dhawan, V., Water and agriculture in India: background paper for the South Asia expert panel during the Global Forum for Food and Agriculture (GFFA) 2017. 2017, OAV German Asia-Pacific Business Association.
 
[19]  Das, S., R.K. Gupta, and H.K. Varma, Flood and drought management through water resources development in India. Bulletin of the World Meteorological Organization, 2007. 56(3): p. 179-188.
 
[20]  USGS, https://www.usgs.gov/special-topic/water-science- school/science/watersheds-and-drainage-basins?qt- science_center_objects=0#qt-science_center_objects.
 
[21]  Adelalu, T.G., et al., Morphometric Analysis of River Donga Watershed in Taraba State Using Remeote Sensing and Gis Techniques. Journal of Geography, Environment and Earth Science International, 2019: p. 1-13.
 
[22]  Clarke, J., Morphometry from maps. Essays in geomorphology. Heinmann, London, 1966: p. 235-274.
 
[23]  Altaf, F., G. Meraj, and S.A. Romshoo, Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geography Journal, 2013. 2013.
 
[24]  Prabhakaran, A. and N.J. Raj, Drainage morphometric analysis for assessing form and processes of the watersheds of Pachamalai hills and its adjoinings, Central Tamil Nadu, India. Applied water science, 2018. 8(1): p. 31.
 
[25]  Nag, S. and S. Chakraborty, Influence of rock types and structures in the development of drainage network in hard rock area. Journal of the Indian Society of Remote Sensing, 2003. 31(1): p. 25-35.
 
[26]  Horton, R.E., Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological society of America bulletin, 1945. 56(3): p. 275-370.
 
[27]  Kannan, R., et al., Drainage morphometric analysis of the Nagavathi watershed, Cauvery river basin in Dharmapuri district, Tamil Nadu, India using SRTM data and GIS. Data in brief, 2018. 19: p. 2420-2426.
 
[28]  Hamad, R., K. Kolo, and H. Balzter, Post-war land cover changes and fragmentation in Halgurd Sakran National Park (HSNP), Kurdistan region of Iraq. Land, 2018. 7(1): p. 38.
 
[29]  Chattopadhyay, G. and S. Choudhury, Application of GIS and remote sensing for watershed development project—a case study. Map India 2006. 2006.
 
[30]  Rai, P.K., et al., A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Applied Water Science, 2017. 7(1): p. 217-232.
 
[31]  SRTM-DEM, USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM).
 
[32]  Horton, R.E., Drainage‐basin characteristics. Eos, transactions american geophysical union, 1932. 13(1): p. 350-361.
 
[33]  Smith, K.G., Standards for grading texture of erosional topography. American journal of Science, 1950. 248(9): p. 655-668.
 
[34]  Miller, V.C., Quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee. Technical report (Columbia University. Department of Geology); no. 3, 1953.
 
[35]  Strahler, A.N., Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology: McGraw-Hill, New York, 1964: p. 4-39.
 
[36]  Sanaullah, M., et al., Evaluating Morphometric Parameters of Haro River Drainage Basin in Northern Pakistan. Polish Journal of Environmental Studies, 2018. 27(1).
 
[37]  Gajbhiye, S., S. Mishra, and A. Pandey, Prioritizing erosion-prone area through morphometric analysis: an RS and GIS perspective. Applied Water Science, 2014. 4(1): p. 51-61.
 
[38]  Kottagoda, S. and N. Abeysingha, Morphometric analysis of watersheds in Kelani river basin for soil and water conservation. Journal of the National Science Foundation of Sri Lanka, 2017. 45(3): p. 6.
 
[39]  Abboud, I.A. and R.A. Nofal, Morphometric analysis of wadi Khumal basin, western coast of Saudi Arabia, using remote sensing and GIS techniques. Journal of African Earth Sciences, 2017. 126: p. 58-74.
 
[40]  Keya, D.R., Estimation of erosion based on USLE method using by GIS in Alibag watershed, Iraqi Kurdistan. Polytechnic Journal, 2018. 8(1).
 
[41]  Saeedpour, V.B., OF KURDISH SPRING AND OUR OWN DISCONTENTED WINTER. The International Journal of Kurdish Studies, 1986. 1(1): p. 57.
 
[42]  Whitehouse, D., Islamic glazed pottery in Iraq and the Persian Gulf: the ninth and tenth centuries. Annali. Istituto Orientale di Napoli Roma, 1979. 39(1): p. 45-61.
 
[43]  Stevanovic, Z. and A. Iurkiewicz, Groundwater management in northern Iraq. Hydrogeology journal, 2009. 17(2): p. 367-378.
 
[44]  Thakkar, A.K., et al., Post-classification corrections in improving the classification of Land Use/Land Cover of arid region using RS and GIS: The case of Arjuni watershed, Gujarat, India. The Egyptian Journal of Remote Sensing and Space Science, 2017. 20(1): p. 79-89.
 
[45]  GAJIĆ, B., et al., Effect of different vegetation types on infiltration and soil water retention. Cereal Research Communications, 2008. 36: p. 991-994.
 
[46]  Taylor, M.D., M. Mulholland, and D. Thornburrow, Infiltration characteristics of soils under forestry and agriculture in the upper Waikato catchment. 2009: Environment Waikato.
 
[47]  Schumm, S.A., Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geological society of America bulletin, 1956. 67(5): p. 597-646.
 
[48]  Strahler, A.N., Dimensional analysis applied to fluvially eroded landforms. Geological Society of America Bulletin, 1958. 69(3): p. 279-300.
 
[49]  Chitra, C., et al., Watershed characteristics of Kundah sub basin using remote sensing and GIS techniques. International Journal of geomatics and geosciences, 2011. 2(1): p. 311.
 
[50]  Nag, S., Morphometric analysis using remote sensing techniques in the Chaka sub-basin, Purulia district, West Bengal. Journal of the Indian society of remote sensing, 1998. 26(1-2): p. 69-76.
 
[51]  Mesa, L.M., Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environmental Geology, 2006. 50(8): p. 1235-1242.
 
[52]  Sujatha, E.R., et al., Morphometric analysis of sub-watershed in parts of Western Ghats, South India using ASTER DEM. Geomatics, Natural Hazards and Risk, 2015. 6(4): p. 326-341.
 
[53]  Kadam, A.K., et al., Identification of erosion-prone areas using modified morphometric prioritization method and sediment production rate: A remote sensing and GIS approach. Geomatics, Natural Hazards and Risk, 2019. 10(1): p. 986-1006.
 
[54]  Magesh, N., et al., Geographical information system-based morphometric analysis of Bharathapuzha river basin, Kerala, India. Applied Water Science, 2013. 3(2): p. 467-477.
 
[55]  Soni, S., Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique. Applied Water Science, 2017. 7(5): p. 2089-2102.
 
[56]  Lama, T., et al., Geomorphometric analysis of a hilly watershed in north east India. International Journal of Agriculture, Environment and Biotechnology, 2015. 8(1): p. 29.
 
[57]  Ajay, P., et al., Morphometric and land use analysis for watershed prioritization in Gujarat State, India. International Journal of Scientific & Engineering Research, 2014. 5(2): p. 1-7.
 
[58]  Chandrashekar, H., et al., GIS–based morphometric analysis of two reservoir catchments of Arkavati River, Ramanagaram District, Karnataka. Aquatic Procedia, 2015. 4: p. 1345-1353.
 
[59]  Suma, B. and C. Srinivasa, A Study on Morphometric Parameter of a Watershed for Sustainable Water Conservation. International Journal of Civil Engineering and Technology, 2017. 8(9).
 
[60]  Kibaroglu, A. and W. Scheumann, Euphrates-Tigris rivers system: Political rapprochement and transboundary water cooperation, in Turkey's water policy. 2011, Springer. p. 277-299.
 
[61]  Malik, M., M. Bhat, and N. Kuchay, Anthropogenic impact on forest cover in the western Himalayas—a case study of Lidder catchment in Kashmir valley. Transactions, 2011. 33(1): p. 55-65.
 
[62]  Sreedevi, P., K. Subrahmanyam, and S. Ahmed, The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environmental Geology, 2005. 47(3): p. 412-420.
 
[63]  Chow, V.T., Handbook of applied hydrology: a compendium of water-resources technology. 1964.
 
[64]  Diao, X., et al., The role of agriculture in development: Implications for Sub-Saharan Africa. Vol. 153. 2007: Intl Food Policy Res Inst.