Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2017, 5(4), 117-124
DOI: 10.12691/AJWR-5-4-4
Original Research

Purifying Potential of Streptomyces albidoflavus Strain DSM 40455T and Streptomyces antibioticus Strain NBRC 12838T in Wastewater Treatment

Andriambeloson Onja1, Rabenirina Harilanto1, Rajoelisoa Andriamalala1, Ramaroson Luciano1 and Rasolomampianina Rado1,

1Department of Terrestrial Ecosystem, National Center of Environmental Research, Laboratory of Environmental Microbiology, Tsimbazaza, BP 1739, Antananarivo 101, Madagascar

Pub. Date: October 28, 2017

Cite this paper

Andriambeloson Onja, Rabenirina Harilanto, Rajoelisoa Andriamalala, Ramaroson Luciano and Rasolomampianina Rado. Purifying Potential of Streptomyces albidoflavus Strain DSM 40455T and Streptomyces antibioticus Strain NBRC 12838T in Wastewater Treatment. American Journal of Water Resources. 2017; 5(4):117-124. doi: 10.12691/AJWR-5-4-4

Abstract

The ability of Actinomycetes strains to degrade pollutant matters and to reduce or eliminate pathogens microorganisms from domestic wastewater of an industrial site (oilfield of Tsimiroro-Madagascar) at the laboratory scale is demonstrated in the present work. Two most active Actinomycetes isolates (Streptomyces albidoflavus strain DSM 40455T and Streptomyces antibioticus strain NBRC 12838T) against test-pathogens were selected for the purification treatment. The analysis of physico-chemical (COD, BOD, pH, conductivity, color, TDS, nitrite, nitrate, phosphate and chloride rates) and microbiological parameters (sulphite reducing anaerobe, fecal coliforms, fecal Streptococcus and Escherichia coli rates) allowed to evaluate the quality of the wastewater. Physico-chemical results revealed that purified water is qualitatively improved view that 60.86% of TDS, 71.61% of its color, 25.55% of its chloride rate, 45.32% of its nitrate rate, 99.9% of its nitrite rate, 26.25% of its phosphate rate, 46.53% of its initial COD and 58.11% of its BOD were eliminated at the end of the treatment. Only, the conductivity increased compared with the guideline values for all treatment. The process improved also microbiological quality of the wastewater with total elimination of fecal Streptococcus and diminution of fecal coliforms, sulphite reducing anaerobe and Escherichia coli concentrations. The experiment proved that biological treatment using Actinomycetes strains is a promising, less expensive and simple technology for wastewater recycling ensuring thus their reuse for other activities.

Keywords

wastewater, biological treatment, Actinomycetes, microbiological quality, physico-chemical quality

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Chelbi, D., Traitement des eaux usées industrielles. Dégradation des colorants azoïques par un procédé intégré couplant un procédé d’oxydation avancée et un traitement biologique. Thèse de doctorat en Sciences, Université Ferhat Abbas, 210p, 2012.
 
[2]  Devaux, I., Intérêts et limites de la mise en place d’un suivi sanitaire dans le cadre de la réutilisation agricole des eaux usées traitées de l’aggromération clermontoise. Thèse de doctorat en Sciences de la Vie et de la Santé, Université Joseph Fourier, Grenoble, 257p, 1999.
 
[3]  Habib, R. et El rhazi, O. Impact sanitaire de la réutilisation des eaux usées, O.M.S. (Organisation Mondiale de la Santé), 463-475, 1989.
 
[4]  Gautier, C. et Fellous, J.L. Eau, pétrole, climat : un monde, 11, 2007.
 
[5]  Hala, S.E.D, Traitement physico-chimique et microbiologique de l’eau: 26, 1983.
 
[6]  Allouche, F.N, Bioépuration: Des bactéries à notre service. Bulletin des Energies Renouvelables, 7, 8-10, 2005.
 
[7]  Andriambeloson, O., Rasolomampianina, R. and Raherimandimby, M., Selection and characterization of bioactive actinomycetes associated with the medicinal plant Ginger (Zingiber officinale). Journal of International Academic Research for Multidisciplinary. 2 (9), 30-45, 2014.
 
[8]  Rasolomampianina, R., Andriambeloson, O. and Rakotovao, T. Biological properties of actinomycetes isolated from marine sponges in Madagascar, Journal of Advanced Laboratory Research in Biology, VI (I): 1-5, 2015.
 
[9]  Acar, J.F. and Goldstein, F.W., Disk Susceptibility Test “in: Lorian, V., Antibiotics in Laboratory Medicine”, William and Wilkins Co., 4th Ed, 1-51, 1996.
 
[10]  Andriambeloson, H.O,. Rasolomampianina, R., Ralambondrahety, R., Andrianantenaina, R., Raherimandimby, M., Randriamiharisoa, F. Biological Potentials of Ginger Associated Streptomyces Compared with Ginger Essential Oil. American Journal of Life Sciences, 4(6), 152-163, 2016.
 
[11]  Gungi, S., Arima, K. and Beppy, T., Screening of antifungal antibiotics according to activities inducing morphological abnormalities. Agricultural and Biological Chemistry, 47, 2061-2069, 1983.
 
[12]  Loqman, S., Barka, E A., Clément, C., and Ouhdouch, Y., Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold, World Journal of Microbiology and Biotechnology, 28, 81-91, 2009.
 
[13]  Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32(5), 1792-7, 2004.
 
[14]  Tamura, K., Stecher, G., Peterson, D., Filipski A., Kumar, S., MEGA 6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol., 30(12), 2725-9, 2013.
 
[15]  Takahashi, Y. and Omura, S., Isolation of new actinomycete strains for the screening of new bioactive compounds, Journal of Genetic Applied Microbiology, 49, 141-154, 2003.
 
[16]  Mukai, A., Fukai, T., Matsumoto, Y., Ishakawa, J., Hoshino, Y., Yazawa, K. et al., Transvalencin Z, a new antimicrobial compound with salicylic acid residue from Nocardia transvalensis IFM 10065. The Journal of Antibiotics, 59, 366-369, 2006.
 
[17]  Inoue, O.O., Netto, W.S., Padilla, G. and Facciotti, M.C.R. Carbon catabolite repression of retamycin production by Streptomyces olindensis ICB20. Brazilian Journal of Microbiology, 38, 58-61, 2007.
 
[18]  Fukunagak, K., Misatot, T., Asakawa, M., Blasticidin, A new Anti-Phytopathogenic Fungal Substance. Part I. Bulletin of the Agricultural Chemical Society of Japan, 19, 181-188, 2008.
 
[19]  Jinenez, J.T., Sturdikova, M., Sturdik, E. Natural products of marine origin and their perspectives in the discovery of new anticancer drugs. Actachimica Slovaca, 2, 63-74, 2009.
 
[20]  Desjardin, V., Réduction du chrome (VI) par la souche Streptomyces thermocarboxydus NH50 isolée à partir d’un sol pollué. Thèse de Doctorat : Sciences techniques du déchet. INSA de Lyon, Faculté des sciences, 246p, 2002.
 
[21]  Basilio, A., González, I., Vicente, M.F., Gorrochategui, J., Cabello, A., González, A., Genilloud, O. Patterns of antimicrobial activities from soil actinomycetes isolated under different conditions of pH and salinity, J. Appl. Microbiol., 95, 814-823, 2003.
 
[22]  Oskay, M., Usame, A., Azeri, C., Antibacterial activity of some actinomycetes isolated from farming soils of Turkey, Afr. J. Biotechnol., 3: 441-446, 2004.
 
[23]  Scherrer, R. and Gerhardt, P., Molecular sieving by the Bacillus megaterium cell wall and protoplast, Journal of Bacteriology,107, 718-735, 1971.
 
[24]  Stanier, R.Y., Doudoroff, M. et Adelberg, E.A. Microbiologie générale, Masson, 1996.
 
[25]  Thenmozhi, M. and Kannabiran, Antimicrobial and antioxidant properties of marine actinomycetes Streptomyces sp VITSTK7. Oxid Antioxid Med Sci., 1(1), 51-57, 2012.
 
[26]  Brix, H., Use of constructed wetlands: in water pollution control: historical development, present status and future perspectives, Water Science and Technology, 308 (8), 209-223, 1994.
 
[27]  Rodier, J., Legube, B., Merlet, N. et coll., L’analyse de l’eau 9e édition, Dunod, Paris, 2009.
 
[28]  Laverman, A., Yan, C., Roose-Amsaleg, C., Garnier, J., Effet des antibiotiques sur les processus de nitrification et dénitrification: synthèse bibliographique et résultats préliminaires. UMR Sisyphe 7619, Fonctionnement des Hydrosystèmes, Université Pierre et Marie Curie-CNRS, 7 p, 2009.
 
[29]  Caselles-Osorio, Villafane, P., Caballero, V., Manzano, Y. Efficiency of Menocosm-Scale Constructed Wetland Systems for Treatment of Sanitary Wastewater Under Tropical Condition, Water Air Pollution, 2011.
 
[30]  Lee, S.B., Kim, H.D., Yim, G.Y., Kim, B.W., Hong, H.K. and Lee, J.S., Industrial Water Quality Standard for Each Industrial Area, Korean Soc. Ind. Eng. Chem., 4 (1), 216-228, 1993.
 
[31]  Hossain, F., Chang, N., Wanielista, N., Xuan, Z., Ammari, D., Nitrification and denitrification in a passive On-site Wastewater Treatment System with a Recirculation Filtration Tank, Water Qual. Expo. Health, 31-46, 2010.