Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2014, 2(4), 81-98
DOI: 10.12691/AJWR-2-4-2
Original Research

Quality Assessment of Groundwater with Special Emphasis on Irrigation and Domestic Suitability in Suri I & II Blocks, Birbhum District, West Bengal, India

S. K. Nag1, and Shreya Das1

1Department of Geological Sciences, Jadavpur University, Kolkata, India

Pub. Date: August 27, 2014

Cite this paper

S. K. Nag and Shreya Das. Quality Assessment of Groundwater with Special Emphasis on Irrigation and Domestic Suitability in Suri I & II Blocks, Birbhum District, West Bengal, India. American Journal of Water Resources. 2014; 2(4):81-98. doi: 10.12691/AJWR-2-4-2

Abstract

The hydrochemical study of groundwater samples was carried out from the Suri I and II blocks of Birbhum district, West Bengal (latitudes 23.76° N – 23.99°N and longitudes 87.42°E - 87.64°E) with an objective of understanding the suitability of local groundwater quality for irrigation and domestic purposes. For this study groundwater samples were collected from 26 (twenty six) locations during the post monsoon and pre monsoon sessions spanning over 2012 and 2013. Groundwater samples were analyzed for their physical and chemical properties using standard laboratory methods. From the analyzed data, some parameters like SAR, SSP, RSC, MAR, PI and KR have been calculated for each water sample to identify the irrigational suitability. Accordingly, the groundwater has been found to be well to moderately suitable for irrigation. In the post monsoon session exceptionally high RSC values for around 80% samples indicate an alkaline hazard to the soil. The ion balance histogram for post monsoon indicates undesirable ion balance values according to fresh water standards whereas in pre monsoon, the samples show good ion balance in water. The Piper’s trilinear diagram used to determine water type suitable for consumption indicates groundwater in the study is of bicarbonate type (fresh type) in both and pre monsoon with exception of a couple of sulfate type samples during pre monsoon. Water Quality Index results depict 90% of water samples are suitable for drinking during post monsoon whereas in pre monsoon that tally comes down 60% rendering 40% samples unsuitable for drinking. Gibb’s diagrams prepared for the post monsoon and pre monsoon sessions indicate that the overall hydrogeochemistry of the study area is dominated by rock – water interaction processes.

Keywords

groundwater quality, irrigation and domestic suitability, ionic balance, Gibb’s diagram, Suri I and II Blocks, Birbhum district, West Bengal

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Central Water Commission (CWC) (2006) Water and related statistics. Central Water Commission, Ministry of Water Resources, Government of India, New Delhi.
 
[2]  FAO (2003) The irrigation challenge: increasing irrigation contribution to food security through higher water productivity from canal irrigation systems. IPTRID Issue Paper 4, IPTRID Secretariat, Food and Agricultural Organization of the United Nations, Rome.
 
[3]  Shah T, Molden D, Sakthivadivel R, Seckler D (2000). The global ground water situation: overview of opportunity and challenges. International Water Management Institute, Colombo.
 
[4]  Chatterjee R, Goorab T, Paul S (2010) Groundwater quality assessment of Dhanbad district, Jharkhand, India. Bull Eng Geol Environ 69: 137-141.
 
[5]  Milovanovic M (2007). Water quality assessment and determination of pollution sources along the Axios / Vardar River, Southeast Europe. Desalination 213: 159-173.
 
[6]  Vasanthavigar M, Srinivasamoorthy K, Gandhi R, Chidambaram S, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttur sub-basin Tamilnadu, India. Env. Monit. Assess. 171 (1-4): 595-609.
 
[7]  Sreedevi PD (2004) Groundwater quality of Pageru river basin. Cuddapah district, Andhra Pradesh. J Geol.Sc. India 64: 619-636 (2004).
 
[8]  Subramani T, Elango L, Dhamodarasamy SR (2005) Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamilnadu, India. Environ Geo 47: 1099-1110.
 
[9]  Schiavo MA, Havser S, Gusimano G, Gatto L (2006) Geochemical characterization of groundwater and sub-marine discharge in the southeastern Sicily. Continental Sshelf Research, 26 (7): 826-834.
 
[10]  Aghazadeh N, Mogaddam AA (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area, Northwest of Iran. J Environ Prot 1: 30-40.
 
[11]  Domenico PA (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New York.
 
[12]  Schuh WM, Klinekebiel DL, Gardner JC, Meyar RF (1997) Tracer and nitrate movements to groundwater in the Norruem Great Plains. J Environ Qual 26:1335-1347.
 
[13]  Hussein MT (2004) Hydrochemical evaluation of groundwater in the Blue Nile Basin, eastern Sudan, using conventional and multivariate techniques. Hydrogeol J 12: 144-158.
 
[14]  Al-Futaisi A, Rajmohan N, Al-Touqi S (2007) Groundwater quality monitoring in and around Barka dumping site, Sultanate of Oman. The Second IASTED (The International Association of Science and Technology for Development) International Conference on Water Resources Management (WRM 2007), Honolulu, Hawaii, USA, 20-22 August.
 
[15]  Jalali M (2007) Hydrochemical identification of groundwater resources and their changes under the impacts of human activity in the Chah basin in western Iran. Environ Monit Assess 130: 347-364.
 
[16]  Pritchard M, Mkandawire T, O’Neill JG (2008) Assessment of groundwater quality in shallow wells within the southern districts of Malawi. Phys Chem Earth 33: 812-823.
 
[17]  Rivers CN, Hiscock KM, Feast NA, Barrett MH, Dennis PF (1996) Use of nitrogen isotopes to identify nitrogen contamination of the Sherwood sandstone aquifer beneath the city of Nottingham, UK. Hydrol J 4(1): 90-102.
 
[18]  Srinivasamoorthy K, Chidambaram S, Vasanthavigar M (2008) Geochemistry of fluorides in groundwater: Salem District, Tamil Nadu, India. J Environ Hydrol 1:16-25.
 
[19]  Ma J, Ding Z, Wei G, Zhao H, Huang T (2009) Sources of water pollution and evolution of water quality in theWuwei basin of Shiyang River, Northwest China. J Environ Manage 90: 1168-1177.
 
[20]  Mohan R, Singh AK, Tripathi JK, Chowdhary GC (2000) Hydrochemistry and quality assessment of groundwater inNaini Industrial area, Allahabad district, Uttar Pradesh. J Geol Soc India 55: 77-89.
 
[21]  Subba Rao N, Prakasa Rao J, John Devadas D, Srinivasa Rao KV, Krishna C, Nagamalleswara Rao B (2002) Hydrogeochemistry and groundwater quality in a developing urban environment of a semiarid region, Guntur, Andhra Pradesh. J Geol Soc India 59: 159-166.
 
[22]  Ahmed SS, Mazumder H, Jahan CS, Ahmed M, Islam S (2002) Hydrochemistry and classification of groundwater, Rajshahi City Corporation Area, Bangladesh. J Geol Soc India 60: 411-418.
 
[23]  Bathrellos GD, Skilodimou HD, Kelepertsis A, Alexakis D, Chrisanthaki I, Archonti D (2008) Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Environ Geol 56: 11-18.
 
[24]  Anku YS, Banoeng-Yakubo B, Asiedu DK, Yidana SM (2009) Water quality analysis of groundwater in crystalline basement rocks, northern Ghana. Environ Geol 58: 989-997.
 
[25]  Kumar M, Kumari K, Singh UK, Ramananthan AL (2009) Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environ Geol 57: 873-884.
 
[26]  Wen XH, Wu YQ, Wu J (2008) Hydrochemical characteristics of groundwater in the Zhangye basin, northwestern China. Environ Geol 55: 1713-1724.
 
[27]  Stamatis G, Lambrakis N, Alexakis D, Zagana V (2006) Groundwater quality in Mesogea basin in eastern Attica (Greece). Hydrol Process 20: 2803-2818.
 
[28]  Pachero J, Marin L, Cabrera A, Steinich B, Escolero O (2001) Nitrate temporal and spatial patterns in 12 water-supply wells, Yucatan, Mexico. Environ Geol 40: 708-715.
 
[29]  Antoniou V (2002) Natural and human environment of Athens basin. Paper presented at the 6th Geographical conference of the Hellenic Geographical Society, Thessaloniki, I. pp. 311-318.
 
[30]  Nag SK, Lahiri A (2012) Hydrochemical Characteristics of Groundwater for Domestic and Irrigation Purposes in Dwarakeswar Watershed area, India. American Journal of Climate Change 1, 217-230.
 
[31]  Nag SK, Ghosh P (2013) Variation in Groundwater Levels and Water Quality in Chhatna Block, Bankura District, West Bengal - A GIS Approach. Jour Geol. Soc. India. 81 (2), pp.261-280.
 
[32]  Nag SK, Saha S (2014). Integration of GIS and remote sensing in groundwater investigations: A case study in Gangajalghati Block, Bankura District, West Bengal, India. Arabian Journal for Science and Engineering.
 
[33]  Nag SK (2014). Evaluation of hydrochemical parameters and quality assessment of the groundwater in Gangajalghati Block, Bankura District, West Bengal, India. Arabian Journal for Science and Engineering.
 
[34]  Prasanna MV, Chidambaram S, Gireesh TV, Jabir Ali TV (2010) A study on hydrochemical characteristics of surface and sub-surface water in and around Perumal Lake, Cuddalore district, Tamil Nadu, South India. Environ Earth Sci.
 
[35]  Tyagi SK, Datta PS, Pruthi NK (2009) Hydrochemical appraisal of groundwater and its suitability in the intensive agricultural area of Muzaffarnagar district, Uttar Pradesh, India. Environ Geol 56: 901-912.
 
[36]  Laluraj CM, Gopinath G (2006) Assessment on seasonal variation of groundwater quality of phreatic aquifers—A river basin system. Environ Monit Assess 117: 45-47.
 
[37]  Nagarajan R, Rajmohan N, Mahendran N, Senthamilkumar S (2009) Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India. Environ Monit Assess.
 
[38]  Jeevanandam M, Kannan R, Srinivasalu S, Rammohan V (2006) Hydrogeochemistry and Groundwater Quality Assessment of Lower Part of the Ponnaiyar River Basin, Cuddalore District, South India. Environ Monit Assess 132(1-3):263-274.
 
[39]  Freeze RA, Cherry JA (1979) Groundwater. Prentice, HallEnglewood Cliffs, p 604.
 
[40]  UNESCO (2007). Water portal newsletter no. 161: Water related diseases. Available at: http://www.unesco org/water/news/ newsletter/161.shtml.
 
[41]  APHA (American Public Health Association) (1995) Standard Methods for Examination of Water and Waste Water. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington DC, USA.
 
[42]  Huh Y, Tsoi MY, Zaitiser A, Edwards JN (1998). The fluvial geochemistry of the river of eastern Siberia. I. Tributaries of Lena River draining the sedimentation platform of the Siberia Craton. Geochem. Cosmochem. Acta 62: 1657-1676.
 
[43]  U.S. Salinity Lab (1954) Saline and Alkali Soils – Diagnosis and Improvement of U.S. Salinity Laboratory. Agriculture Hand Book No.60, Washington.
 
[44]  Doneen LD (1964) Water quality for agriculture. Department of irrigation, University of California. Davis. pp. 48.
 
[45]  WHO (2008) Guidelines for drinking-water quality: incorporating first and second addenda, Recommendations, 3rd edition, WHO Press, v.1, 668p.
 
[46]  Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. Scientific Publishers, Jodhpur, p.2254.
 
[47]  Ayers RS, Westcot DW (1994) Water quality for agriculture: FAO Irrigation and Drainage Paper 29. Revision. 1. pp. 1-130.
 
[48]  Subba Rao N (2006) Seasonal variation of groundwater quality in a part of Guntur district, Andhra Pradesh, India. Environ Geol 49:413-429.
 
[49]  Richards, L. A. (Ed). (1954). Diagnosis and improvement of saline and alkali soils (p. 160). USDA Hand Book, No. 60.
 
[50]  Todd DK (1980) Ground water hydrology. Wiley, New York, 527p.
 
[51]  Wilcox LV (1955) Classification and use of irrigation waters. USDA, Circular 969, Washington.
 
[52]  Gupta SK, Gupta, IC (1987) Management of Saline Soils and Water. Oxford and IBH Publ. Co., New Delhi, India, 399p.
 
[53]  Raju NJ (2007) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environ Geol 52: 1067-1074.
 
[54]  Kumar M, Kumari K, Ramanathan AL, Saxena R (2007) A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ Geol 53: 553-574.
 
[55]  Paliwal KV (1972) Irrigation with saline water, Monogram no. 2 (New series). New Delhi, IARI, p 198.
 
[56]  Kelly WP (1940) Permissible composition and concentration of irrigated waters. In: Proceedings of the ASCF66. p. 607.
 
[57]  Sawyer CN, McCarty PL (1967) Chemistry for sanitary engineers. 2nd Ed., McGraw–Hill, New York, Pp.518.
 
[58]  Piper AM (1994) A graphic procedure in the geochemical interpretation of water analysis. Am Geophys Union Trans 25: 914-923.
 
[59]  Back W (1966) Hydrochemical facies and groundwater flow pattern in northern part of Atlantic Coastal Plain. US Geol Survey Prof Pap 498-A: 42.
 
[60]  Walton WC (1970) Groundwater resources evaluation. McGraw Hill Book Co., New York.
 
[61]  Apambire WB, Boyle DR, Michael FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33 (1): 13-24.
 
[62]  Tiwari TN, Mishra MA (1985) A preliminary assignment of water quality index of major Indian rivers. Indian J Environ Prot 5: 276-279.
 
[63]  Gibbs RJ (1970) Mechanisms Controlling World’s Water Chemistry. Science 170: 1088-1090.