Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2014, 2(3), 54-62
DOI: 10.12691/AJWR-2-3-1
Original Research

Effects of Watershed Land Use Data on HSPF Water Quality in the Upper Opequon Watershed in northern Virginia, USA

Isaac A. Alukwe1, and Theo Dillaha2

1Energy and Environmental Engineering, Mount Kenya University, Thika, Kenya

2Biological Systems Engineering, Virginia Tech, Blacksburg, USA

Pub. Date: July 13, 2014

Cite this paper

Isaac A. Alukwe and Theo Dillaha. Effects of Watershed Land Use Data on HSPF Water Quality in the Upper Opequon Watershed in northern Virginia, USA. American Journal of Water Resources. 2014; 2(3):54-62. doi: 10.12691/AJWR-2-3-1

Abstract

Land use data source can contribute to errors in watershed modeling. This paper evaluated the effects of using site-specific versus county-level aggregated land use data on Hydrologic Simulation Program-Fortran (HSPF) simulated contaminant losses. Site-specific land use was derived from the local watershed land use inventory while aggregated land use was derived from county-level data (percentage of county land in various land use categories and sub-categories). County level data are useful when modeling large watersheds such as the Chesapeake Bay Watershed when collection and use of site-specific data may be cost prohibitive. The study site was the 14,941 ha predominately rural Upper Opequon Watershed in northern Virginia, USA. Percentage relative errors in model output were calculated and compared using the two land use data sources. Results showed that use of aggregated land use data resulted in 13, 3 and 4 percent higher simulated sediment, and total nitrogen and phosphorus losses, respectively due to overestimated cropland area. The higher contaminant losses would suggest the need for more management measures to meet water quality goals. This study suggests that while the use of county-level aggregated land use data may be appropriate for developing basin scale pollutant reduction goals such as those in total maximum daily load (TMDL) plans, it should be used with extreme caution for watershed planning and implementation activities on smaller watersheds that may mandate site-specific changes in land management and costs for landowners. For smaller watersheds, TMDLs and their watershed implementation plans should utilize local site-specific spatial data that accurately reflects watershed conditions. This will help target resources where they are most needed and maintain credibility with local stakeholders while improving the accuracy of the developed pollution reduction plans.

Keywords

HSPF, water quality modeling, land use, TMDLs, watershed management

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Chaubey, I., Sensitivty Analysis, Calibration, and Validatios for A Mlti-variable SWAT Model. Journal of the American Water Resources Association, 41(5): 1077-1089. 2005.
 
[2]  Eckhardt, K., L. Beuer, and H.G. Frede, Parameter uncertainty and the significance of simulated land use change effects.Journal of Hydrology, 273: 164-176.2003.
 
[3]  Patil, A., Z. Q. Deng, and R.F. Malone,Input data resolution-induced uncertainty in watershed modeling.Hydrologic Processes, 25:2302-2312. 2011.
 
[4]  Yagow, G., B. Benham, K. Kline, B. Zeckoski, and C. Wallace, A Method for Disaggregating Existing Model Pollutant Loads for Subwatersheds.Watershed Science Bulletin. Journal of the Association of Watershed & Stormwater Professionals, 3(1): 49-61. 2012.
 
[5]  VADCR. Virginia Bay Total Maximum Daily Load, 2012. Available: http://www.dcr.virginia.gov/vabaytmdl/index.shtml.
 
[6]  VADCR and VADEQ. Bacteria TMDLs for Abrams Creek and Upper and Lower Opequon Creek Located in Frederick and Clarke County, Virginia, 2003. Available: http://www.deq.state.va.us/tmdl/apptmdls/shenrvr/abropebc.pdf.
 
[7]  USEPA. Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) v. 3.0 User’s Manual, EPA-823-B01-001, Washington, D.C., Office of Water, USEPA, 2001. Available: http://water.epa.gov/scitech/datait/models/basins/index.cfm.
 
[8]  USEPA. Chesapeake Bay Total Maximum Daily Load, 2010. Available: http://www.epa.gov/reg3wapd/pdf/pdf_chesbay/FinalBayTMDL/CBayFinalTMDLExecSumSection1through3_final.pdf.
 
[9]  Migliaccio, W.K. and P. Srivastava. Hydrologic Components of Watershed-Scale Models.ASABE 100th Anniversary Soil and Water Invited Review Series, 1695-1703]. Aug. 2007. Available: http://trec.ifas.ufl.edu/kwm/documents/Migliaccio-Srivastava.pdf.
 
[10]  CBP. Chesapeake Bay Phase 5.3 Community Watershed Model, 2010. Available: http://www.chesapeakebay.net/model_phase5.aspx?menuitem=26169.
 
[11]  Hunsaker, C.T., C.T. Garten, and P.J. Mulholland. Modeling Nitrogen Cycling in Forested Watersheds of Chesapeake Bay, 1995. Available: www.ntis.gov/search/product.aspx?ABBR=DE95008845.
 
[12]  Bicknell, B. R., J. C. Imhoff, J. John, L. Kittle, T. H. Jobes, and A. S. Donigian,Hydrological Simulation Program - Fortran (HSPF Ver.12.2) User's Manual. Athens, GA: USEPA, 2005. Available: http://www.epa.gov/ceampubl/swater/hspf/.
 
[13]  Im, S., K. Brannan, S. Mostaghimi, and J. Cho, A Comparison of SWAT and HSPF Models for Simulating Hydrologic and Water Quality Responses from an Urbanizing Watershed.ASABE Annual International Meeting, 2003. Available: http://swatmodel.tamu.edu/media/1303/asae032175.pdf.
 
[14]  Deliman, P. N., C. E. Ruiz, A. S. Donigian, T. H. Jobes, E. J. Nelson, and C. T. Manwaring, Application of HSPF-AGCHEM Module Within the WMS for the LeSueur Basin. 2001. Available: http://el.erdc.usace.army.mil/wots/pubs.cfm?Topic=TechNote&Code=watqual.
 
[15]  Liu, Y., Application and Sensitivity Analysis of a Watershed Model Application using HSPF with the Nutrient Algorithm AGCHEM in Upper Broad Run Watershed, Virginia, in Civil and Environmental Engineering, Virginia Tech [ETDS - PhD Dissertation], 2011.
 
[16]  NCDC. National Climatic Data Center, 2012. Available: http://www.ncdc.noaa.gov/oa/ncdc.html.
 
[17]  MAWP. The Mid-Atlantic Nutrient Management Handbook, 2006. Available: http://www.mawaterquality.org/capacity_building/mid-atlantic%20nutrient%20management%20handbook/MANMH_complete.pdf.
 
[18]  CBP, Chesapeake Bay Watershed Model Application and Calculation of Nutrient and Sediment Loadings, 1997, A Report of the Chesapeake Bay Program Modeling Subcommittee: Annapolis, MD.
 
[19]  CBP. Chesapeake Bay model Tributary Tools,Loads and Landuse Acreage, 2010. Available:http://www.chesapeakebay.net/tribtools.htm. [Accessed Jan. 2010].
 
[20]  MWPS, Livestock Waste Facilities Handbook (II ed.). Ames, Iowa: MidWest Plan Service, Iowa State Univ., 1993.
 
[21]  VADCR and VADEQ. Opequon Watershed TMDLs for Benthic Impairments: Abrams Creek and Lower Opequon Creek, Frederick and Clarke Counties, Virginia, 2003. Available: http://www.deq.state.va.us/tmdl/apptmdls/shenrvr/abropebc.pdf.
 
[22]  CBP, Chesapeake Bay Phase 5.3 Community Watershed Model Land Use Data., 2012. Available: ftp://ftp.chesapeakebay.net/Modeling/phase5/Phase532/land_use/.
 
[23]  Gupta, H.V., S. Sorooshian, and P.O. Yapo, Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration.Journal of Hydrologic Engineering, 4(2): 135-143. 1999.
 
[24]  Van Liew, M.W., Veith, T. L., Bosch, D. D. and Arnold J. G., Suitability of SWAT for the conservation effects assessment project: A comparison on USDA-ARS experimental watersheds. Hydrologic Engineering, 12(2): 173-189.2007.
 
[25]  Nash, J.E. and J.V. Sutcliffe, River flow forecasting through conceptual models: Part 1. A discussion of principle.Hydrology, 10(3): 282-290. 1970.
 
[26]  Moriasi, D.N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D. and Veith, T. L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.Tranactions. of the ASABE, 50(3): 885-900. 2007.
 
[27]  Ramanarayanan, T.S., R. Srinivasan, and J.G. Arnold,Modeling Wister Lake Watershed Using a GIS-Linked Basin Scale Hydrologic/Water Quality Model, in Third International Conference/Workshop on Integrating Geographic Information Systems and Environmental Modeling, National Center for Geographic Information and Analysis, 1996. Santa Fe, New Mexico.
 
[28]  Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R. and Hauck, L. M., Validation of the SWAT Model on A large River Basin with Point and Nonpoint Sources.Journal of the American Water ResesourcesAssociation, 37(5): 1169-1188. 2001.
 
[29]  Singh, J., H.V. Knapp, and M. Demissie. Hydrologic Modeling of the Iroquois River Watershed Using HSPF and SWAT. 2008. Available: http://www.isws.illinois.edu/pubdoc/CR/ISWSCR2004-08.pdf.
 
[30]  Cosgrove, D.M. and J. Taylor, Preliminary Assessment of Hydrogeology and Water Quality in Ground Water in Canyon, County, Idaho, Idaho Water Resources Research Institute, University of Idaho for the Idaho Department Environmental Quality, 2007.
 
[31]  Dibike, Y.B., Gachon, P., St-Hilaire, A., Ouarda, T. B.., Nguyen M. J. and Van T. V., Uncertainty analysis of statistically downscaled temperature and precipitation regimes in Northern Canada.Theoretical and Applied Climatology, 91(1): 149-170. 2008.
 
[32]  Meentemeyer, R.K., Rank, N. E., Anacker, B. L., Rizzo, D. M. and Cushman, J. H., Influence of Land-Cover Change on the Spread of an Invasive Forest Pathogen.Ecological Applications, 18(1): 159-171. 2008.
 
[33]  Rupert, M.G., Decadal-scale changes of nitrate in ground water of the United States, 1988-2004. Journal of Environmental Quality, 37: 240. 2008.
 
[34]  Thompson, J.A., J.C. Bell, and C.A. Butler, Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling.Geoderma,. 100(1–2): 67-89. 2001.
 
[35]  Yang, G., Bowling, L. C., Cherkauer, K. A., Pijanowski, B. C. and Niyogi, D, Hydroclimatic Response of Watersheds to Urban Intensity: An Observational and Modeling-Based Analysis for the White River Basin, Indiana. Journal of Hydrometeorology, 11(1): 122-138. 2010.
 
[36]  Fontaine, T.A. and V.M.F. Jacomino, Sensitivity analysis of simulated contaminated sediment transport. Journal American Water Resources Assocociation,33(2): 313-326. 1997.
 
[37]  Storm, D.E., Dillaha, T. A., Mostaghimi, S. and Shanholtz, V. O., Modeling Phosphorus Transport in Surface Runoff.Transactions of ASAE,31(1): 117-0127. 1988.
 
[38]  Tang, Y., Reed, P., Wagener, T. and van Werkhoven, K., Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrology and earth systems science,11(2): 793-817. 2007.
 
[39]  Legates, D.R. and G.J. McCabe, Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation.Water Resources Research, 35(1): 233-241. 1999.
 
[40]  Obiero, J.P.O., M.A. Hassan, and L.O.M. Gumbe, Modelling of Streamflow of a Catchment in Kenya. Journal of Water Resource and Protection,3: 667-677. 2011.
 
[41]  Hall, K., Comparing Alternative Methods of Simulating Bacteria Concentrations With HSPF under Low-Flow Conditions, in Biological Systems Engineering, MSc. Thesis, Virginia Tech, 2007.
 
[42]  Hall, K.M., Brian L. B., Brannan, K. M. and Zeckoski R. W. Assessing Alternative Fecal Coliform Direct Deposit Modeling Approaches,in 21st Century Watershed Technology: Improving Water Quality and Environment, ASABEProceedings of the 29 March - 3 April 2008 Conference. Concepcion, Chile.
 
[43]  Zeckoski, R. Rebecca Zeckoski's Engineering Blog. Available: http://rzeckoskiengineering.blogspot.com/2011/10/low-flow-conundrum-part-1.html.[Accessed May 12, 2013].
 
[44]  MDDEQ, Total Maximum Daily Load of Phosphorus in the Antietam Creek Watershed, Washington County, Maryland, 2012, Maryland Department of Environmental Quality (MDDEQ): 1800 Washington Boulevard, Suite 540, Baltimore, Maryland 21230-1718.
 
[45]  Walker, L., Calleguas Creek Nutrient TMDLs, 2001, Larry Walker Associates. Prepared for Los Angeles Regional Water Quality Control Board: Santa Monica, CA.
 
[46]  Yagow, G. Using GWLF for development of “reference watershed approach” TMDLs, in 2004Proceedings of the American Society of Agricultural and Biological Engineers and the Canadian Society for Bioengineering annual international meeting, paper no. 042262. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
 
[47]  Yagow, G., Mostaghimi, S., Dillaha,T., Brannan, K., Wynn, J., Zeckoski, R. and Brian, B.Linville Creek TMDL for A Benthic Impairment, in Proceedings of the 8-12 November 2003 Conference. Albuquerque, New Mexico USA: Transactions of ASAE.
 
[48]  USEPA, National Management Measures for the Control of Nonpoint Pollution from Agriculture. USEPA-Office of Water, U.S. Environmental Protection Agency (U.S. EPA): Washington D.C. Jul., 2003.
 
[49]  USEPA,Economic Analyses of Nutrient and Sediment Reduction Actions to Restore Chesapeake Bay Water Quality, in U.S. EPA Region III- Chesapeake Bay Program Office, U.S. Environmental Protection Agency (U.S. EPA): Annapolis, MD, 2003.