Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2024, 12(2), 53-61
DOI: 10.12691/AJWR-12-2-3
Original Research

Analysis of Climatic Variables on the Water Resources of the Ouémé River Using the Seasonal ARIMA Approach

Taohidi Alamou Lamidi1, , Cossi Télesphore Nounangnonhou1 and Bienvenu Macaire Agbomahena1

1Department of Electrical Engineering, EPAC-UAC, Abomey-Calvi, Bénin

Pub. Date: April 11, 2024

Cite this paper

Taohidi Alamou Lamidi, Cossi Télesphore Nounangnonhou and Bienvenu Macaire Agbomahena. Analysis of Climatic Variables on the Water Resources of the Ouémé River Using the Seasonal ARIMA Approach. American Journal of Water Resources. 2024; 12(2):53-61. doi: 10.12691/AJWR-12-2-3

Abstract

One of today's research challenges is to predict and anticipate the continuing effects of climate change, so as to be able to react and adapt to future developments. Global warming and weather forecasts indicate a growing risk of climate change-related events, which are not without consequences for ecosystems, including the Ouémé river basin. Water availability is strongly influenced by the variability of meteorological parameters. Precipitation and temperature are important parameters that have been side-lined in many water resource management projects. Daily rainfall and temperature data from 1982 to 2022 were collected at three representative sites in the Ouémé river basin: Bétérou, Savè and Kétou. Time series analysis, and more specifically trend analysis, was used as a first approach to describe the evolution of the various parameters over time. In this study, the ARIMA seasonal model (SARIMA) was used and forecasts were made for the next 30 years (2015-2045). The auto-regressive (p) integrated (d) moving average (q) model (ARIMA) is based on the Box Jenkins approach, which predicts future trends by making the data stationary and removing seasonality. The results of the study show that temperatures are high during the dry season, when precipitation is low. In addition, the multiplicative seasonal models that best fit precipitation and temperature are represented by ARIMA (5, 1, 0)(2, 0, 0)12 and ARIMA (2, 1, 1)(1, 0, 1)12 respectively. The information on patterns and trends can be used as a forecasting tool for the planning and procurement of water resource projects, as well as for the development of better water management practices in the study area.

Keywords

ARIMA Models, forecasting, precipitation, temperature, Ouémé river

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  W. Lutz, W. Sandersen, M. Baker, J. Carter and C. Wood, "The End of World Population Growth: Human Capital and Sustainable Development in the 21st Century", Earthscan, London, UK, 2004, 1st edition.
 
[2]  Minville, M., Krau, S., Brissette, F. and Leconte, R. Behaviour and performance of a water resource system in Québec (Canada) under adapted operating policies in a climate change context, Water Resour. Manag., 24, 2010, pp. 1333–1352.
 
[3]  GIEC. Bilan des changements climatiques. Contribution des groupes de travail I, II, III au quatrième rapport d’évaluation du climat, Rapport; Groupe d’experts Intergouvernemental sur l’Evolution du Climat: Genève, Suisse, 2007, pp. 103.
 
[4]  Nicholson, S. E. Climatic and environmental change in Africa during the last two centuries, Clim. Res., 17(2), 2001, pp. 123- 144.
 
[5]  Le Lay, M. Modélisation hydrologique dans un contexte de variabilité hydro-climatique : une approche comparative pour l’étude du cycle hydrologique à méso-échelle au Bénin, Thèse de doctorat, Institut National Polytechnique de Grenoble, France, 2006, pp. 251.
 
[6]  Desjarlais, C., and Da Silva, L. L’impact économique des changements climatiques sur la production hydroélectrique du Saint-Laurent, Rapport présenté à la Division des impacts et de l’adaptation liés aux changements climatiques, Ressources naturelles Canada et au Gouvernement du Québec, Montréal, Canada, 2016, pp.16.
 
[7]  Boucher, M. A., Changements climatiques et production hydroélectrique canadienne: où en sommes-nous? Canadian Water Resour. J., 38(3), 2013, pp. 196–209.
 
[8]  Niroumand, H; Bozorhnia, A. 2006. Time series. Payame Nour University Press. Tehran, Iran.
 
[9]  Dimri, T., Ahmad, S. & Sharif, M. Time series analysis of climate variables using seasonal ARIMA approach. J Earth Syst Sci 129, 149 (2020).
 
[10]  Kaushik I and Singh S M 2008 Seasonal ARIMA model for forecasting of monthly rainfall and temperature; J. Environ. Res. Dev. 3(2) 506–514.
 
[11]  Tularam G A and Ilahee M 2010 Time series analysis of rainfall and temperature interactions in coastal catchments; J. Math. Stat. 6(3) 372–380.
 
[12]  Sarraf A, Vahdat S F and Behbahaninia A 2011 Relative humidity and mean monthly temperature forecasts in Ahwaz Station with ARIMA model in time series analysis; IPCBEE 12 149–153.
 
[13]  Abdul-Aziz A R, Anokye M, Kwame A L, Munyakazi and Nsowah-Nuamah N N N 2013 Modelling and Forecasting rainfall pattern in Ghana as a seasonal arima process: The case of Ashanti region; IJHSS 3(3) 224–233.
 
[14]  Aiyelokun O and Olodo A 2017 Forecasting one decade ahead minimum temperature and relative humidity for water resources management in lower Niger; J. Water Security 3 jws2017006.
 
[15]  Afrifa-Yamoah E 2015 Application of ARIMA models in forecasting monthly average surface temperature of Brong Ahafo Region of Ghana; Int. J. Stat. Appl. 5(5) 237–246.
 
[16]  Akinbobola A, Okogbue E C and Ayansola A K 2018 Statistical modelling of monthly rainfall in selected stations in forest and savannah eco-climatic regions of Nigeria; J. Climatol. Weather Forecasting 6 S1.
 
[17]  Twumasi, Y.A., Annan, J.B., Merem, E.C., Namwamba, J.B., Ayala-Silva, T., Ning, Z.H., Asare-Ansah, A.B., Oppong, J., Frimpong, D.B., Loh, P.M., Owusu, F., Kangwana, L.A., Mwakimi, O.S., Petja, B.M., Okwemba, R., Akinrinwoye, C.O., Mosby, H.J. and McClendon-Peralta, J. (2021) Time Series Analysis on Selected Rainfall Stations Data in Louisiana Using ARIMA Approach. Open Journal of Statistics, 11, 655-672.
 
[18]  Wang H R, Wang C, Lin X and Kang J 2014 An improved ARIMA model for precipitation simulations; Nonlin. Process. Geophys. 21(6) 1159–1168.
 
[19]  Wang S, Feng J and Liu G 2013 Application of Seasonal time series model in the precipitation forecast; Math. Comput. Model 58(3–4) 677–683, 10.1016/j.mcm.2011.10.034.
 
[20]  Zakaria S, Al-Ansari N, Knutsson S and Al-Badrany T 2012 ARIMA models for weekly rainfall in the semi-arid Sinjar district at Iraq; J. Earth Sci. Geotech. Eng. 2(3) 25–55.
 
[21]  Valipour M 2015 Long-term runoA study using SARIMA and ARIMA Models in the United States; Meteorol. Appl. 22(3) 592–598.
 
[22]  Barthel, R., Jagelke, J., Gaiser, T., Printz, A. and Götzinger, J. Aspects of choosing appropriate concepts for modelling groundwater resources in regional Integrated Water Resources Management. Examples from the Neckar (Germany) and Ouémé catchment (Benin), Phys. Chem. Earth, 33(1–2), 2008, pp. 92–114.
 
[23]  Bossa, Y. A. Multi-scale modeling of sediment and nutrient flow dynamics in the Ouémé catchment (Benin), towards an assessment of global change effects on soil degradation and water quality, Thesis (PhD), University of Bonn, Germany, 2012, pp. 110.
 
[24]  Lawin, A. E. Analyse climatologique et statistique du régime pluviométrique de la Haute Vallée de l’Ouémé à partir des données AMMA – CATCH Bénin, Thèse de Doctorat, Institut National Polytechnique de Grenoble, France, 2007, pp. 211.
 
[25]  Diekkrüger, B., Busche, H., Giertz, S. and Steup, G. Hydrology, In: Impacts of Global Change on the Hydrological Cycle in West and Northwest Africa. Speth, P., Christoph, M. and Diekkrüger, B. (Eds.). Springer, Heidelberg, Germany, 2010, pp. 60-64.
 
[26]  Beven, K. J. Rainfall-runoff modeling: the primer, 2nd ed, John Wiley and sons, Chichester, England, 2001, pp. 360.
 
[27]  Arnold, J., Srinivasan, R., Muttiah, R. S. and Williams, J. R. Large area hydrologic modeling and assessment part I: Model development, J. Am. Water Resour. Assoc., 34(1), 1998, pp. 73–89.
 
[28]  Power | Data Access Viewer, Aug. 2022.
 
[29]  Yoosef Doost A, Sadeghian M S, Node Farahani M A and Rasekhi A 2017 Comparison between performance of statistical and low cost ARIMA Model with GFDL, CM2.1 and CGM 3 atmosphere–ocean general circulation models in assessment of the eAects of climate change on temperature and precipitation in Taleghan Basin; Austr. J. Water Resource. 5(4) 92–99.