Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2023, 11(4), 142-148
DOI: 10.12691/AJWR-11-4-3
Original Research

Hydrochemical Assessment and Quality of Groundwater in Tchamba Prefecture, Upstream of the Mono River Basin, Togo

Agbessi Koffi Sodomon1, , Seyf-Laye Alfa-Sika Mande1, 2, Lallébila Tampo1, 3, Kossitse Venyo Akpataku1, 3, Moudassirou Sedou1 and Kossi Jorge Komlan1

1Department of Chemistry, Faculty of Sciences and Techniques, University of Kara, Togo

2Laboratory of Applied Hydrology and Environment, Faculty of Science, University of Lomé; Togo;Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing 100083, P.R. China

3Laboratory of Applied Hydrology and Environment, Faculty of Science, University of Lomé; Togo

Pub. Date: October 13, 2023

Cite this paper

Agbessi Koffi Sodomon, Seyf-Laye Alfa-Sika Mande, Lallébila Tampo, Kossitse Venyo Akpataku, Moudassirou Sedou and Kossi Jorge Komlan. Hydrochemical Assessment and Quality of Groundwater in Tchamba Prefecture, Upstream of the Mono River Basin, Togo. American Journal of Water Resources. 2023; 11(4):142-148. doi: 10.12691/AJWR-11-4-3

Abstract

Groundwater is the most important source of water supply in Tchamba prefecture. Groundwater quality contaminations have emerged in many geographical areas due to natural environmental processes and human intervention in the geosystems. Hydrochemical evaluation of groundwater quality in the study area was investigated. The physicochemical parameters such as major ions were determined. Factor analysis was used to identify key parameters that described groundwater quality in the study area. The first two factors were considered: Factor 1 explained 53.43% of the total variance and translates the natural rainwater recharge and water-soil/rock interaction process. The second factor (F2) explained 22.05% of the total variance and expresses the anthropogenic pressure such as domestic sewage, uncontrolled landfill waste, fertilizers, and wastewater. The results showed that silicate mineral dissolution and cation exchange in aquifers play an important role in groundwater chemistry evolution.

Keywords

groundwater, hydrochemical, mineral dissolution, factor analysis

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  WHO, « Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum », 2017. https://www.who.int/publications-detail-redirect/9789241549950 (consulté le 28 avril 2021).
 
[2]  F. Obiri-Nyarko et al., « Hydrogeochemical Studies to Assess the Suitability of Groundwater for Drinking and Irrigation Purposes: The Upper East Region of Ghana Case Study », Agriculture, vol. 12, no 12, p. 1973, 2022.
 
[3]  S. Zoulgami, M. D. T. Gnazou, T. Kodom, G. Djaneye-Boundjou, et L. M. Bawa, « Physico-chemical study of groundwater in the Northeast of Kara region (Togo) », International Journal of Biological and Chemical Sciences, vol. 9, no 3, p. 1711‑1724, 2015.
 
[4]  A. J. Adewumi, A. Y. B. Anifowose, F. O. Olabode, et T. A. Laniyan, « Hydrogeochemical Characterization and Vulnerability Assessment of Shallow Groundwater in Basement Complex Area, Southwest Nigeria », Contemporary Trends in Geoscience, vol. 7, no 1, p. 72‑103, juin 2018.
 
[5]  J. Andrzej, Witkowski, J.-K. Sabina, C. Joanna, et G. Dorota, Groundwater Vulnerability and Pollution Risk Assessment. 2022. Consulté le: 24 novembre 2022. [En ligne]. Disponible sur: https://www.routledge.com/Groundwater-Vulnerability-and-Pollution-Risk-Assessment/Witkowski-Jakobczyk-Karpierz-Czekaj-Grabala/p/book/9781032400723.
 
[6]  WHO, « Guidelines for drinking-water quality, 4th edition », 2011. https://www.who.int/publications-detail-redirect/9789241548151 (consulté le 8 novembre 2022).
 
[7]  R. Bos, « WHO Guidelines for the safe use of wastewater, excreta and greywater in agriculture and aquaculture: policy aspects », in Regional workshop on health aspects of wastewater reuse in agriculture, OMS/CEHA, 2006.
 
[8]  A. Badameli et V. Dubreuil, « diagnostic du changement climatique au togo à travers l’évolution de la température entre 1961 ET ».
 
[9]  J. L. Faundeen, R. L. Kanengieter, et M. D. Buswell, « US geological survey spatial data access », Journal of Geospatial Engineering, vol. 4, no 2, p. 145‑145, 2002.
 
[10]  K. S. Godonou, A. Aregba, et P. Assih-Edeou, Notice explicative de la carte géologique à 1:200.000. Feuille Sokodé. Lomé: Direction générale mines géologie, 1986.
 
[11]  J. P. Sylvain, A. Aregba, J. Collart, et K. S. Godonou, « Carte Géologique du Togo à 1/500.000 et Notice Explicative », République Togolaise, Direction Générale des Mines, de la Géologie et du Bureau National de Recherches Minières. Memoire, vol. 6, p. 120, 1986.
 
[12]  F. Fabio, A. Fredrik, et K. Gnandi, « Etude de faisabilité des forages manuels au Togo Identification des zones potentiellement Favorables », 2009.
 
[13]  ESRI, « À propos d’ArcGIS | Logiciel et services de cartographie et d’analyse », 2023. https://www.esri.com/fr-fr/arcgis/about-arcgis/overview (consulté le 14 septembre 2023).
 
[14]  J. Rodier, B. Legube, et N. Merlet, « L’Analyse de l’eau 9e édition », Entièrement Mise À Jour Dunod Paris, 2009.
 
[15]  B. Banoeng-Yakubo, S. M. Yidana, et E. Nti, « Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta region, Ghana », KSCE Journal of Civil Engineering, vol. 13, no 1, p. 55‑63, 2009.
 
[16]  V. Cloutier, R. Lefebvre, R. Therrien, et M. M. Savard, « Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system », Journal of Hydrology, vol. 353, no 3, p. 294‑313, mai 2008.
 
[17]  K. Akpataku et al., « Hydrochemical and isotopic characterization of groundwater in the southeastern part of the Plateaux Region, Togo », Hydrological Sciences Journal, vol. 64, mai 2019.
 
[18]  K. E. Ahoussi, Y. M. S. Oga, Y. B. Koffi, A. M. Kouassi, N. Soro, et J. Biemi, « Caractérisation hydrogéochimique et microbiologique des ressources en eau du site d’un Centre d’Enfouissement Technique (CET) de Côte d’Ivoire: cas du CET de Kossihouen dans le District d’Abidjan (Côte d’Ivoire) », International Journal of Biological and Chemical Sciences, vol. 5, no 6, p. 2524‑2542, 2011.
 
[19]  E. K. Ahoussi, N. Soro, A. M. Kouassi, G. Soro, Y. B. Koffi, et S. P. Zade, « Application des méthodes d’analyses statistiques multivariées à l’étude de l’origine des métaux lourds (Cu 2+, Mn 2+, Zn 2+ et Pb 2+) dans les eaux des nappes phréatiques de la ville d’Abidjan », International Journal of Biological and Chemical Sciences, vol. 4, no 5, 2010.
 
[20]  M. Lasagna et D. A. De Luca, « Evaluation of sources and fate of nitrates in the western Po plain groundwater (Italy) using nitrogen and boron isotopes », Environmental Science and Pollution Research, vol. 26, no 3, p. 2089‑2104, 2019.
 
[21]  A. M. Piper, « A graphic procedure in the geochemical interpretation of water-analyses », Eos, Transactions American Geophysical Union, vol. 25, no 6, p. 914‑928, 1944.
 
[22]  H. Schoeller, « Geochemistry of groundwater », Groundwater studies, an international guide for research and practice, UNESCO, Paris, p. 1‑18, 1977.
 
[23]  N. Adimalla, « Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA) », Environmental Geochemistry and Health, vol. 42, no 6, p. 1725‑1752, 2020.
 
[24]  S.-L. A.-S. Mande, M. Liu, F. Liu, H. Chen, G. Djaneye-Boundjou, et M. L. Bawa, « Geochemical Investigation of Groundwater’s of Shallow Coastal Aquifer in and around Lomé », Energy Procedia, no 11, p. 2600‑2605, 2011.
 
[25]  S. Peña-Haro, C. Llopis-Albert, M. Pulido-Velazquez, et D. Pulido-Velazquez, « Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain », Journal of Hydrology, vol. 392, no 3‑4, p. 174‑187, 2010.
 
[26]  F. Barbecot, C. Marlin, E. Gibert, et L. Dever, « Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (northern France) », Applied Geochemistry, vol. 15, no 6, p. 791‑805, juill. 2000.
 
[27]  A. Khettouch, M. Hssaisoune, M. Maaziz, A. A. Taleb, et L. Bouchaou, « Characterization of groundwater in the arid Zenaga plain: Hydrochemical and environmental isotopes approaches », Groundwater for Sustainable Development, vol. 19, p. 100816, nov. 2022.
 
[28]  N. Aghazadeh et A. A. Mogaddam, « Investigation of hydrochemical characteristics of groundwater in the Harzandat aquifer, Northwest of Iran », Environmental monitoring and assessment, vol. 176, p. 183‑195, 2011.
 
[29]  F. Heine, K. Zosseder, et F. Einsiedl, « Hydrochemical Zoning and Chemical Evolution of the Deep Upper Jurassic Thermal Groundwater Reservoir Using Water Chemical and Environmental Isotope Data », Water, vol. 13, no 9, Art. no 9, janv. 2021.
 
[30]  J. Liu, H. Wang, D. Jin, F. Xu, et C. Zhao, « Hydrochemical characteristics and evolution processes of karst groundwater in Carboniferous Taiyuan formation in the Pingdingshan coalfield », Environ Earth Sci, vol. 79, no 6, p. 151, mars 2020.
 
[31]  T. Iwatsuki, R. Furue, H. Mie, S. Ioka, et T. Mizuno, « Hydrochemical baseline condition of groundwater at the Mizunami underground research laboratory (MIU) », Applied Geochemistry, vol. 20, no 12, p. 2283‑2302, déc. 2005.
 
[32]  A. K. Sodomon, S.-L. Alfa-Sika Mande, A. A. Dougna, et M. Afoda, « Wells and boreholes physicochemical water quality evaluation in the Atakpamé commune under agriculture and municipal wastewater impact », International Journal of Natural and Engineering Sciences, vol. 10(5), p. 62‑72, nov. 2021.
 
[33]  Z. Zhou et al., « Hydrogeochemical and isotopic characteristics of groundwater in Xinchang preselected site and their implications », Environ Sci Pollut Res, vol. 27, no 28, p. 34734‑34745, oct. 2020.
 
[34]  S.-W. Jeen, J.-M. Kim, K.-S. Ko, B. Yum, et H.-W. Chang, « Hydrogeochemical characteristics of groundwater in a mid-western coastal aquifer system, Korea », Geosciences Journal, vol. 5, p. 339‑348, 2001.
 
[35]  M. Kurdi, S. Tabasi, T. Eslamkish, et A. Hezarkhani, « Hydrogeochemical study to evaluate the suitability of water for irrigation purpose at Qareh sou catchment, North of Iran », Elixir Geosci, vol. 62, p. 17536‑17541, 2013.
 
[36]  J.-H. Kim et al., « Hydrogeochemical evolution of formation waters responsible for sandstone bleaching and ore mineralization in the Paradox Basin, Colorado Plateau, USA », GSA Bulletin, vol. 134, no 9‑10, p. 2589‑2610, févr.