Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2023, 11(3), 103-111
DOI: 10.12691/AJWR-11-3-3
Case Study

Impact of Climate Change on the Water Resources, Lake Powell, United States

Michael Osezua1, , Shree Om Bade1, Emmanuel Gyimah1 and Olusegun Stanley Tomomewo1

1Energy Studies, University of North Dakota, Grand Forks, USA

Pub. Date: August 08, 2023

Cite this paper

Michael Osezua, Shree Om Bade, Emmanuel Gyimah and Olusegun Stanley Tomomewo. Impact of Climate Change on the Water Resources, Lake Powell, United States. American Journal of Water Resources. 2023; 11(3):103-111. doi: 10.12691/AJWR-11-3-3

Abstract

This case study examines the impacts of climate change on water resources at Lake Powell, USA, using a comprehensive methodology combining data analysis through regression and system dynamics modeling. Through regression analysis, historical data is analyzed to identify trends and relationships between climate change factors and their impact on water resources. A system dynamics model is then used to simulate reservoir dynamics illustrating the effects of inflow and outflow on water reservoir depletion. The results from both methods reveal the challenges of current water management regulations and policies to address the risks posed by climate change at Lake Powell. Therefore, this case study highlights the urgent need for sustainable water management policies at Lake Powell. Underscoring the seriousness of the problem overhaul of existing strategies, the research argues for proactive measures to mitigate the effects of climate change. The study provides policymakers and water resource agencies with significant insights and recommendations sustainable utilization of this essential resource.

Keywords

climate change, Lake Powell, regression method, system dynamic, water resources

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Caminade, C., McIntyre, K. M., & Jones, A. C. (2018). Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences, 1436(1), 157–173.
 
[2]  Bai, Y., Ochuodho, T. O., & Yang, J. (2019). Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 102, 51–64.
 
[3]  Papalexiou, S. M., & Montanari, A. (2019). Global and Regional Increase of Precipitation Extremes Under Global Warming. Water Resources Research, 55(6), 4901–4914.
 
[4]  Stojković, M., & Simonovic, S. P. (2019). System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions. Water, 11(8), 1620.
 
[5]  Masseroni, D., Brocca, L., Cislaghi, A., Vacchiano, G., & Massari, C. (2021). The 63-year changes in annual streamflow volumes across Europe with a focus on the Mediterranean basin. Hydrology and Earth System Sciences, 25(10), 5589–5601.
 
[6]  Li, D., Wrzesien, M. L., Durand, M., Adam, J. C., & Lettenmaier, D. P. (2017). How much runoff originates as snow in the western United States, and how will that change in the future? Geophysical Research Letters, 44(12), 6163–6172.
 
[7]  United Nations Environment Programme [UNDP] (2020). How climate change is making record-breaking floods the new normal. https://www.unep.org/news-and-stories/story/how-climate-change-making-record-breaking-floods-new-normal (Accessed 12 March 2023).
 
[8]  Ahmed, T., Zounemat-Kermani, M., & Scholz, M. (2020). Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan. International Journal of Environmental Research and Public Health, 17(22), 8518.
 
[9]  National Oceanic and Atmospheric Administration. (2021). Drought Task Force Report on the 2020–2021 Southwestern U.S. Drought, Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318.
 
[10]  Gudmundsson, L., Boulange, J., Xuan, H., DO, Seneviratne, S. I., Grillakis, M., Koutroulis, A., Leonard, M., Liu, J., Schmied, H. M., Papadimitriou, L., Pokhrel, Y., Seneviratne, S. I., Satoh, Y., Thiery, W., Westra, S., Zhang, X., & Zhao, F. (2021). Globally observed trends in mean and extreme river flow attributed to climate change. Science, 371(6534), 1159–1162.
 
[11]  Douville, H., Raghavan, K., Renwick, J., Allan, J.P, Arias, P.A., Barlow,M., Cerezo-Mota, R., Cherchi, A., Gan, T.Y., Gergis, J., Jiang, D., Khan,A., Pokam Mba, W., Rosenfeld, D., Tierney, J., and Zolina,O. (2021). Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 1055–1210.
 
[12]  Eyring, V., Gillett, N.P., Achuta Rao, K.M., Barimalala,R., Barreiro Parrillo, M., Bellouin, N., Cassou,C., Durack, P.J., Kosaka, Y., McGregor, S., Min,S., Morgenstern,O., and Sun,Y. (2021). Human Influence on the Climate System. Cambridge University Press, pp. 423–552,
 
[13]  Blöschl, G., Hall, J. L., Parajka, J., Perdigão, R. a. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N. L., Gorbachova, L., Gül, A., Hannaford, J., . . . Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588–590.
 
[14]  United National Development Programme [UNDP]. (2016). The Vulnerability of Pakistan’s Water Sector to the Impacts of Climate Change: Identification of Gaps and Recommendations for Action.
 
[15]  Fleming, E. A., Payne, J. B., Sweet, W., Craghan, M., Haines, J., Hart, J. F., Stiller, H., & Sutton-Grier, A. E. (2018). Chapter 8 : Coastal Effects. Impacts, Risks, and Adaptation in the United States: The Fourth National Climate Assessment, Volume II.
 
[16]  Murphy, J. C. & Sprague, L. A. (2019). Water-quality trends in U.S. rivers: exploring effects from streamflow trends and changes in watershed management. Science of the Total Environment 656, 645–658.
 
[17]  United Nation. (2022). The Sustainable Development Goals Report. https://www.un.org/development/desa/dspd/2022/07/sdgs-report/(Accessed May 12 2023).
 
[18]  United States Environmental Protection Agency [EPA]. (2021). Climate Change Indicators: Wildfires: https://www.epa.gov/climate-indicators/climate-change-indicators-wildfires.
 
[19]  European Economic Area (2017). Climate Impacts on Water Resources; European Environment Agency Copenhagen, Denmark.
 
[20]  Global Climate Risk Index. (2021). In Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000 to 2021; German watch https://www.germanwatch.org/en/19777 (Accessed 04 April 2023).
 
[21]  Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M., Radić, V., & Slangen, A. B. A. (2019). GlacierMIP – A model intercomparison of global-scale glacier mass-balance models and projections. Journal of Glaciology, 65(251), 453–467.
 
[22]  National Oceanic and Atmospheric Administration. (2019). Colorado River Drought Contingency Planning https://www.drought.gov/news/colorado-river-drought-contingency-planning (Accessed April 15 2023).
 
[23]  United States Bureau of Reclamation. (2021). Reclamation announces 2022 operating conditions for Lake Powell and Lake Mead.
 
[24]  National Park Service (NPS) (n.d). U.S. Department of the Interior. Lake Powell Pure. http://www.nps.gov/glca/learn/news/lpp.htm (Accessed 08 April 2023).
 
[25]  Udall, B., & Overpeck, J. T. (2017). The twenty-first century Colorado River hot drought and implications for the future. Water Resources Research, 53(3), 2404–2418.
 
[26]  Graham, K. (2022). “Dwelling water levels of Lake Powell only getting worse” https://www.digitaljournal.com/tech-science/dwindling-water-levels-of-lake-Powell-only-getting-worse/article#ixzz7QmQhtuVJ (Accessed 06 April 2023).
 
[27]  NASA Earth Observatory (2021). World of Change: Lake Powell https://earthobservatory.nasa.gov/world-of-change/LakePowell(Accessed 06 April 2023).
 
[28]  United States Bureau of Reclamation (2008). The law of river, https://www.usbr.gov/lc/region/g1000/lawofrvr.html (Accessed 12 May 2023).
 
[29]  United States Department of the Interior. (2007). Interim Guidelines for the Operation of Lake Powell and Lake Mead. https://www.usbr.gov/lc/region/programs/strategies/RecordofDecision.pdf (Accessed12 May 2023).
 
[30]  United States Bureau of Reclamation (2022). Upper Colorado Region-water operations https://www.usbr.gov/rsvrWater/HistoricalApp.html (accessed 06 May 2023).