Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2023, 11(2), 79-87
DOI: 10.12691/AJWR-11-2-4
Original Research

An Assessment of Three Water Related Ecosystem Services in the Dano Catchment under Future Climate Conditions

Yira Yacouba1, , Bossa Yaovi Aymar2, Ngom L. A. L. C. A. Guedji3, Hounkpè Jean2, Hounkpatin L. Ozias4, Mouhamed Idrissou5 and Sintondji O. Luc2

1Department of Natural Substances, Applied Science and Technology Research Institute—IRSAT/CNRST, Ouagadougou, Burkina Faso

2Department of Hydrology and Water Resources Management, National Institute of Water, University of Abomey–Calavi, Cotonou 01, Benin

3Department of Water Engineering, Pan African University institute of Water and Energy Sciences, Tlemcen, Algeria

4Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden

5West African Science Service Centre on Climate Change and Adapted Land Use-WASCAL, University of Lomé, Lomé, Togo

Pub. Date: July 11, 2023

Cite this paper

Yira Yacouba, Bossa Yaovi Aymar, Ngom L. A. L. C. A. Guedji, Hounkpè Jean, Hounkpatin L. Ozias, Mouhamed Idrissou and Sintondji O. Luc. An Assessment of Three Water Related Ecosystem Services in the Dano Catchment under Future Climate Conditions. American Journal of Water Resources. 2023; 11(2):79-87. doi: 10.12691/AJWR-11-2-4

Abstract

This study assesses the impact of future climate change on three water related ecosystem services (WRES) in the Dano catchment. The conceptual rainfall-runoff model HBV light was successfully calibrated (NSE = 0.945, R² = 0.945, and KGE= 0.948) and validated (NSE = 0.648, R² = 0.798, and KGE= 0.551) and demonstrated a good agreement between observed and simulated variables. The projected climate change signal in the catchment was analyzed using the WASCAL high-resolution regional climate simulations (HadGEM2-ES and GFDL-ESM2M under RCP 4.5) between a refence period (1985-2005) and two future periods (2020-2049 & 2070-2099). Compared to the reference period, both climate models show an increase in temperature of +1.9 to +2.8 °C by 2020-2049, and at the end of the century 3.2 to 5.4 °C. Precipitation trends of + 10 to +30 % in the middle of the century and between +37 to +51.4% towards 2100 are projected. The projected annual discharges change signals show an increase of +25 % to +68 % by 2049, while at the end of the century this increase exceeds +80.65. The simulated hydrological changes were translated into changes in WRES provision (hydropower, domestic water consumption, and ecological flow). The projected discharge increase will translate in an increase of hydropower generation potential but this increase in discharge will not be enough to meet future additional domestic water demand. Domestic water supply will decrease because of population growth. Therefore, the projected increase in future discharge will not be sufficient to counterbalance the additional water demand associated to population development.

Keywords

Climate change, hydrological modelling, Water related ecosystems services, HBV-light, Burkina Faso

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  B. Fisher, R. K. Turner, and P. Morling, “Defining and classifying ecosystem services for decision making,” Ecol. Econ., vol. 68, no. 3, pp. 643–653, Jan. 2009, doi: 10.1016/j.ecolecon.2008.09.014.
 
[2]  S. M. Díaz et al., The global assessment report on biodiversity and ecosystem services: Summary for policy makers. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019. Accessed: May 23, 2023. [Online]. Available: https://ri.conicet.gov.ar/handle/11336/116171
 
[3]  D. Russi et al., The Economics of Ecosystems and Biodiversity for Water and Wetlands. 2013.
 
[4]  Y. Yira, B. Diekkrüger, G. Steup, and A. Y. Bossa, “Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations,” Hydrol Earth Syst Sci, vol. 21, no. 4, pp. 2143–2161, Apr. 2017, doi: 10.5194/hess-21-2143-2017.
 
[5]  G. I. Yangouliba et al., “Impacts of hydro-climatic trends and upstream water management on hydropower generation at the Bagré dam,” J. Water Clim. Change, vol. 13, no. 6, pp. 2399–2413, May 2022, doi: 10.2166/wcc.2022.452.
 
[6]  H. Chang and M. R. Bonnette, “Climate change and water‐related ecosystem services: impacts of drought in california, usa,” Ecosyst. Health Sustain., vol. 2, no. 12, p. e01254, Dec. 2016, doi: 10.1002/ehs2.1254.
 
[7]  M. Dembélé et al., “Contrasting changes in hydrological processes of the Volta River basin under global warming,” Hydrol. Earth Syst. Sci., vol. 26, no. 5, pp. 1481–1506, Mar. 2022, doi: 10.5194/hess-26-1481-2022.
 
[8]  L. A. L. C. A. G. Ngom, “An Assessment of Climate Change Impact on Water Related Ecosystem Services (WRES) including Hydropower Potential in the Dano Catchment (Volta Basin),” Master Thesis, PAUWES, 2019. Accessed: May 23, 2023. [Online]. Available: http://repository.pauwes-cop.net/handle/1/339
 
[9]  M. Idrissou et al., “Modeling the Impact of Climate and Land Use/Land Cover Change on Water Availability in an Inland Valley Catchment in Burkina Faso,” Hydrology, vol. 9, no. 1, Art. no. 1, Jan. 2022, doi: 10.3390/hydrology9010012.
 
[10]  D. Heinzeller et al., “The WASCAL high-resolution regional climate simulation ensemble for West Africa: Concept, dissemination and assessment,” Earth Syst. Sci. Data, vol. 10, no. 2, Art. no. 2, 2018, doi: 10.5194/essd-10-815-2018.
 
[11]  L. Gudmundsson, J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, “Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations - a comparison of methods,” Hydrol. Earth Syst. Sci., vol. 16, no. 9, pp. 3383–3390, Sep. 2012, doi: 10.5194/hess-16-3383-2012.
 
[12]  J. Seibert and M. J. P. Vis, “Teaching hydrological modeling with a user-friendly catchment-runoff-model software package,” Hydrol Earth Syst Sci, vol. 16, no. 9, pp. 3315–3325, Sep. 2012, doi: 10.5194/hess-16-3315-2012.
 
[13]  H. V. Gupta, H. Kling, K. K. Yilmaz, and G. F. Martinez, “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling,” J. Hydrol., vol. 377, no. 1–2, pp. 80–91, Oct. 2009, doi: 10.1016/j.jhydrol.2009.08.003.
 
[14]  Q. F. Togbévi, A. Y. Bossa, Y. Yira, K. Preko, L. O. Sintondji, and M. van der Ploeg, “A multi-model approach for analysing water balance and water-related ecosystem services in the Ouriyori catchment (Benin),” Hydrol. Sci. J., vol. 65, no. 14, pp. 2453–2465, Oct. 2020, doi: 10.1080/02626667.2020.1811286.
 
[15]  F. Op de Hipt, B. Diekkrüger, G. Steup, Y. Yira, T. Hoffmann, and M. Rode, “Applying SHETRAN in a Tropical West African Catchment (Dano, Burkina Faso)—Calibration, Validation, Uncertainty Assessment,” Water, vol. 9, no. 2, p. 101, Feb. 2017, doi: 10.3390/w9020101.
 
[16]  Y. Yira, B. Diekkrüger, G. Steup, and A. Y. Bossa, “Modeling land use change impacts on water resources in a tropical West African catchment (Dano, Burkina Faso),” J. Hydrol., vol. 537, pp. 187–199, Jun. 2016, doi: 10.1016/j.jhydrol.2016.03.052.
 
[17]  V. Aich et al., “Comparing impacts of climate change on streamflow in four large African river basins,” Hydrol Earth Syst Sci, vol. 18, no. 4, pp. 1305–1321, Apr. 2014, doi: 10.5194/hess-18-1305-2014.
 
[18]  F. Op de Hipt et al., “Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN,” Sci. Total Environ., vol. 653, pp. 431–445, Feb. 2019, doi: 10.1016/j.scitotenv.2018.10.351.
 
[19]  R. Yonaba et al., “Future climate or land use? Attribution of changes in surface runoff in a typical Sahelian landscape,” Comptes Rendus Géoscience, vol. 355, no. S1, pp. 1–28, 2023, doi: 10.5802/crgeos.179.
 
[20]  G. T. Oyerinde et al., “Quantifying Uncertainties in Modeling Climate Change Impacts on Hydropower Production,” Climate, vol. 4, no. 3, p. 34, Jun. 2016, doi: 10.3390/cli4030034.
 
[21]  T. C. Mutsindikwa et al., “Modeling climate change impact on the hydropower potential of the Bamboi catchment,” Model. Earth Syst. Environ., vol. 7, no. 4, pp. 2709–2717, Nov. 2021, doi: 10.1007/s40808-020-01052-w.
 
[22]  Y. Yira, T. C. Mutsindikwa, A. Y. Bossa, J. Hounkpè, and S. Salack, “Assessing climate change impact on the hydropower potential of the Bamboi catchment (Black Volta, West Africa),” in Proceedings of IAHS, Copernicus GmbH, Nov. 2021, pp. 349–354. doi: 10.5194/piahs-384-349-2021.