Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2023, 11(1), 11-19
DOI: 10.12691/AJWR-11-1-2
Original Research

Use Hydrochemistry and Environmental Isotopes for the Assessment Mineralization of Groundwater in Miopliocene Aquifers in Douala 3 (Cameroon)

Tatou Rel Dechangue1, and Kamgang Kabeyene Veronique2

1Department of Earth Sciences, University of Maroua, Cameroon

2Department of Earth Sciences, University of Dschang, Cameroon

Pub. Date: March 01, 2023

Cite this paper

Tatou Rel Dechangue and Kamgang Kabeyene Veronique. Use Hydrochemistry and Environmental Isotopes for the Assessment Mineralization of Groundwater in Miopliocene Aquifers in Douala 3 (Cameroon). American Journal of Water Resources. 2023; 11(1):11-19. doi: 10.12691/AJWR-11-1-2

Abstract

Linked hydrochemical and isotopic studied were carried out to identify and explain the processes that control the mineralization in miopliocene aquifers in Douala basin. According to the results of the chemical analysis, the water is acidic and poor mineralized. The investigation highlights that groundwater mineralization is mainly influenced by ion exchange process, carbonate dissolution and silicate weathering. Based on isotopic signatures, shallow aquifer groundwater samples were classified into waters with depleted δ18O contents, highlighting the result of a rapid infiltration of local meteoric waters which has undergone a low evaporation process. Deep aquifer and some points of shallow aquifer are more enriched in 18O than the local rains. This reflects a certain level of evaporation which the rainwater would have undergone before reaching the aquifer or the leaching of heavy isotopes accumulated in the unsaturated zone during the dry season. The relatively recent age of the waters that recharge the aquifer explains the weak action of the water-rock interaction hence the weak mineralization of the waters overall.

Keywords

hydrochemistry, isotopes, mineralization, groundwater, miopliocene aquifers, Douala

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Ben Moussa A, Zouari K, Oueslati N. (2011). Hydrochemical and isotope evidence of groundwater salinization processes on the coastal plain of Hammamet–Nabeul, north-eastern Tunisia. Journal of Physical and Chemical Earth 36: 167-178
 
[2]  Thiry M., Bariteau A. (2003). Nappe de Beauce: Hydrochimie et altération de sables de Fontainebleau. Centre d’Information Géologique, Ecole des Mines de Paris, France. 108 p.
 
[3]  Srinivasamoorthy, K., Chidambaram, S., Prasanna, M.V., Vasanthavigar, M., John peter, A., Anandhan, P. (2008). Identification of major sources controlling groundwater chemistry from a hard rock terrain- A case study from Mettur taluk, Salem district, Tamilnadu, India. Journal of Earth System Science, 117(1), 49-58.
 
[4]  Kuitcha D., Fouépé Takounjou A. L., Ndjama J. (2013). Apport de l’hydrochimie et de l’isotope de l’environnement à la connaissance des ressources en eaux souterraines de Yaoundé, Cameroun, Journal of Applied Biosciences, 67: 5194-5208.
 
[5]  Ndjigui P.D., Bilong P., Nyek B., Eno Belinga S.M., Gerard M. (1999). Etude morphologique, minéralogique et géochimique de deux profils latéritiques dans la plaine de Douala (Cameroun) In géologie et environnement au Cameroun; Vicat J.P et Bilong P., Edtion. Collection Geocam Press, Université de Yaoundé, pp 189-201.
 
[6]  Regnoult J.M. (1986). Synthèse géologique du Cameroun. Ministère des mines et de l’énergie du Cameroun, Yaoundé, 119p.
 
[7]  SNH. (2005). Synthèse sur le Bassin du Rio Del Rey et sur le bassin de Douala/Kribi-Campo. Rapport interne: 14 p.
 
[8]  Njike Ngaha P.R. (2004). Palyno-stratigraphie et reconstitution des paléoenvironnements du Crétacé de l’Est du bassin sédimentaire de Douala (Cameroun), Thèse de Doctorat d’Etat, Université de Yaoundé, 259p.
 
[9]  Brand, W. A., Geilmann, H., Crosson, E.R., Rella, C.W. (2009). Cavity ring-down spectroscopy versus high-temperature conversion isotope ratio mass spectrometry; a case study on ´ 2H and 18O of pure water samples and alcohol/water mixtures. Rapid Communication in Mass Spectrometer, 23, 1879-1884.
 
[10]  Lis, G., Wassenaar, L.L., Hendry, M.J. (2008). High precision laser spectrometry D/H and 18O/16O measurements of microliter natural water samples. Analytical Chemistry, 80, 287-293.
 
[11]  Njitchoua R., Ngounou Ngatcha B. (1997). Hydrogeochemistry and environmental isotope investigations of the north Diamare plain, northern Cameroon, Journal of. African earth science, 25, 307-316.
 
[12]  Bakalowicz M. (1994). Water geochemistry: Water quality and dynamics. Groundwater ecology. J. Gilbert, D.L. Danielopol, and J.A. New York, Academic Press, INC: 571 p.
 
[13]  Appelo C.A.J., Postma D, (2005). Geochemistry, groundwater and pollution, 2nd edn. A.A Balkema, Rotterdam, 647pp.
 
[14]  Sikdara P.K., Sarkar, S.S., Palchoudhury, S. (2001). Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences 19, 579-594.
 
[15]  Garcia M.G., Del Hidalgo M., Blesa M.A. (2001). Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Journal of Hydrology 9:597-610.
 
[16]  Dassi L (2004). Etude hydrogéologique, géochimique et isotopique du système aquifère du bassin de Sbeïtla Tunisie Centrale). Thèse 3ème cycle, Université de Sfax, Tunisie.
 
[17]  Fischer S.R., Mullican W.F. (1997). Hydrogeochemical evolution of sodium-sulphate and sodium-chloride groundwater beneath the northern Chihuahua desert, Trans-Pecos, Texas, U.S.A., Hydrogeology Journal, 5, 4-16.
 
[18]  Tetteh Glover E. (2013): Hydrogeochemical characterization of the rocks of the Accra plains for a radioactive waste repository, PhD, University of Ghana, Legon, 271p.
 
[19]  Kengni L., Simo Pieam J., Temgoua E., Tematio P., Ndam Ngoupayou, J. R. et Boeglin J. L. (2013). Hydrogeochemical processes in the southern slope of the bambouto mountain (west Cameroon), International Journal of Engineering Science and Technology, Vol. 5 No.04 April 2013, pp 896-908.
 
[20]  Njueya Kopa A., Nono A., Likeng J.D.H. (2012). Hydrodynamique et qualité des eaux souterraines dans le bassin sédimentaire de Douala (Cameroun): cas des aquifères sur formations Quaternaires et Tertiaires, International. Journal of Biological and Chemical. Science. 6(4): 1874-1894.
 
[21]  Thierrin J. (1990). Contribution à l'étude des eaux souterraines de la région de Fribourg (Suisse Occidentale), Thèse, Université de Neuchâtel, 305p.
 
[22]  Tatou R. D., Kamgang Kabeyene V., Ewodo Mboudou G. (2017). Multivariate Statistical Analysis for the Assessment of Hydrogeochemistry of Groundwater in Upper Kambo Watershed (Douala-Cameroon), Journal of Geoscience and Environment Protection, 5, 252-264.
 
[23]  Maya A.L., Loucks M.D. (1995). Solute and isotopic geochemistry and groundwater flow in the Central Wasatch range, Utah. Journal of Hydrology 172, 31-59.
 
[24]  Kumar Manish, Ramanathan A.L., Rao M.S., Kumar Bhishma (2006). Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environmental Geology, 50, 1025-1039.
 
[25]  Datta P.S., Tyagi S.K. (1996). Major ion chemistry of groundwater in Delhi area: Chemical weathering processes and groundwater flow regime: Journal of Geological Society of India, 47: 179-188.
 
[26]  Nguetchoua (1996). Etude des facies et environnements sédimentaires du quaternaire supérieur du plateau continental camerounais. Thèse de Doctorat, Université of Yaoundé I, Perpignan, 288.
 
[27]  Oinam Jayalakshmi D., Ramanathan A.L., Singh G. (2012). Geochemical and statistical evaluation of groundwater in Imphal and Thoubal district of Manipur, India, Journal of Asian Earth Sciences, 48 (2012). 136-149.
 
[28]  Elango L, Kannan R., Senthil Kumar M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in part of Kancheepuram district, Tamil Nadu, Indian Journal of Environmental. Geoscience. 10(4) 157-166.
 
[29]  Freeze R. A., Cherry J. A. (1979). GroundWater. Prentice-Hall, Englewood Cliffs, NJ, 553.
 
[30]  Garrels R.M., Mackenzie F.T. (1971). Evolution of Sedimentary Rocks. Norton & Co., New York.. xvi + 397 p.
 
[31]  Drever J.I. (1997). The geochemistry of natural waters, 3rd ed., Prentice Hall, New Jersey, New York, 436pp.
 
[32]  Nguetnkam J.P., Kamga R., Villiéras F., Ekodeck G.E., Yvon J. (2008). Altération différentielle du granite en zone tropicale. Exemple de deux séquences étudiées au Cameroun (Afrique Centrale). Comptes Rendus Géoscience, 340, 451-461.
 
[33]  Ndome Effoudou E. (2010). Minéralogie, géochimie et applications géotechniques des produits d’altération sur roches sédimentaires de Douala. Thèse de Doctorat, Université de Yaoundé I, 210 p+annexes.
 
[34]  Bayiga E. C., Bitom D., Ndjigui P.-D., Bilong P. (2011). Mineralogical and geochemical characterization of weathering products of amphibolites at SW Eséka (Northern border of the Nyong unit, SW Cameroon), Journal of Geology and Mining Research, Vol. 3(10), pp.281-293, October 2011.
 
[35]  Ngon G.F.N., Abomo P.S., Mbog M.B., Bitchong A.M., Mbaï J.S., Minyemeck T.V.N., Fouateu R.Y. (2015). Geological, Mineralogical and Geochemical Studies of Pyrite Deposits in the Eastern Part of Douala Sub-Basin (Cameroon, Central Africa). International Journal of Geosciences, 6, 882-893.
 
[36]  Tatou R.D. (2019). Evaluation de la qualité de l’eau dans le bassin versant de kambo-amont (Douala): approche hydrochimique et bactériologique, Thèse de Doctorat, PhD, université de Dschang, 189p.
 
[37]  Ketchemen-Tandia, B., Ntamak-Nida M.J., Boum-Nkot S., Wonkam C., Emvoutou H., Ebonji Seth C., Aranyossy J.E. (2007). First results of the isotopic study (18O, 2H, 3H) of the Douala Quaternary aquifer (Cameroon). In: IAEA (Ed.), Advances in Isotope Hydrology and Its Role in Sustainable Water Resources Management (IAEA-CN 151/37). IAEA, Vienna.
 
[38]  Ako Ako A., Shimada J., Hosono T., Kagabu M., Akoachere R., Elambo Nkeng G., Tongwa Aka F., Masahiko Ono, Eneke Takem Eyong G., Ketchemen Tandia B,. Mouncherou Oumar F. (2013). Flow dynamics and age of groundwater within a humid equatorial active volcano (Mount Cameroon) deduced by δD, δ18O, δ3H and chlorofluorocarbons (CFCs), Journal of Hydrology 502: 156-176.
 
[39]  Deshpande R.D., Bhattacharya S.K, Jani R.A., Gupta S.K. (2003). Distribution of oxygen and hydrogen isotopes in shallow groundwater from southern India: influence of a dual monsoon system. Journal of Hydrology 271:226-239.
 
[40]  Negrel J., Kosuth P., Bercher N. (2011). Estimating river discharge from earth observation measurements of river surface hydraulic variables, Hydrology. Earth System. Science, 15, 2049-2058.
 
[41]  Wirmvem M. J., Mimba M. E., Kamtchueng T. B., Wotany E. R., Bafon T. G., Nkengmatia A., Wilson E. A., Fantong Y. Ayonghe S. N., Ohba T. (2015). Shallow groundwater recharge mechanism and apparent age in the Ndop plain, northwest Cameroon, Applied Water Science.
 
[42]  Ndembo L. J. (2009). Apport des outils hydrogéochimiques et isotopiques a la gestion de l’aquifère du mont Amba. (Kinshasa / République Démocratique du Congo), Thèse de Doctorat, Université d’Avignon, 203P.
 
[43]  Aranyossy JF, Filly A, Tandia AA, Louvat D, Ousmane B, Joseph A., Fontes J C. (1989). Estimation des flux d’évaporation diffuse sous couvert sableux en climat hyper aride (Erg de Bilma, Niger), In Isotope techniques in water ressources development IAEA-SM-319/39: 309-324.
 
[44]  Domenico P.A., Schwartz F.W. (1990). Physical and Chemical Hydrogeology, John and Wiley & Sons, New York, 824 p.
 
[45]  Clark, I., Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Lewis Publishers, New York, 328 p.
 
[46]  Ketchemen-Tandia B., Ngo Boum S., Ebonji Seth C.R., Nkoue Ndong G.R., Wonkam C., Huneau F., Celle-Jeanton, H. (2011). Stable isotopic composition of rainfall in Western Cameroon, in Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies, Proceedings of International Symposium, Monaco, 27 March-1 April 2011, Pp113-120.
 
[47]  Ketchemen B. (1992). Étude hydrogéologique du Grand Yaéré (extrême nord du Cameroun), synthèse hydrogéologique et étude de la recharge par les isotopes de l'environnement, Thèse Doctorat. 3e Cycle, Université Cheikh Anta Diop, Dakar, 216p.