Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2023, 11(1), 1-10
DOI: 10.12691/AJWR-11-1-1
Original Research

Contribution of End Member Mixing Analysis Model to Characterize the Sources Responsible for Urban River Water Quality: Case of Houet River in Burkina Faso

Sauret Élie Serge Gaëtan1, , Dende Lushima Zacharie1, 2, , Compaore Hillary Marie Michelle1, 2, Kinglo August M. Abdon2, Yabre Sadraki3, Koita Mahamadou2, Konate Yacouba2 and Karoui Hela2

1Institut de l’Environnement et de Recherches Agricoles, Département Gestion des Ressources Naturelles et Systèmes de Productions (INERA/GRN-SP), Bobo-Dioulasso 01 BP 910, Burkina Faso

2Laboratoire Eaux HydroSystèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Ouagadougou 01 BP 594, Burkina Faso

3West African Science Service Centre on Climate Change and Adapted Land Use (Wascal) - Institut National de l’Eau, Université d’Abomey Calavi, Benin

Pub. Date: January 16, 2023

Cite this paper

Sauret Élie Serge Gaëtan, Dende Lushima Zacharie, Compaore Hillary Marie Michelle, Kinglo August M. Abdon, Yabre Sadraki, Koita Mahamadou, Konate Yacouba and Karoui Hela. Contribution of End Member Mixing Analysis Model to Characterize the Sources Responsible for Urban River Water Quality: Case of Houet River in Burkina Faso. American Journal of Water Resources. 2023; 11(1):1-10. doi: 10.12691/AJWR-11-1-1

Abstract

The study focused on the assessment of sources responsible for an urban river’s water quality. To do the analysis, water samples were collected from three sources. The first source was rainfall, the second source was a Wastewater Treatment Plant (WWTP) which releases pre-treated wastewater in the river, and the third source was the river itself at upstream and downstream parts from the WWTP discharge point in the river. The results of the chemical analysis performed on those water samples showed that the water discharged from the WWTP into the river has a poor physico-chemical quality and high microbiological pollution. However as expected, water samples of rainfall were of good quality. Water samples from the river revealed the presence of microbiological flora (total coliforms, fecal coliforms, Escherichia coli and fecal Streptococci) and chemical elements such as ammonium (NH4+), manganese (Mn), nickel (Ni) with high concentrations values than those recommended for irrigation waters as defined by World Health Organization (WHO) and the Food and Agriculture Organization (FAO) of the United Nations. However, parameters like temperature (T°), hydrogen potential (pH), electrical conductivity (EC), total dissolved solids (TDS), suspended solids (SS), chemical oxygen demand (COD), biological oxygen demand (BOD5) ortho-phosphate (PO43-), nitrate (NO3-), nitrite (NO2-), sodium (Na+), bicarbonate (HCO3-), calcium (Ca2+), magnesium (Mg2+), chloride (Cl-), zinc (Zn2+) and iron (Fe2+) are in line with the reference values for irrigation. Furthermore, water mixing analysis model "End Members Mixing Analysis (EMMA)" based on principal component analysis (PCA) of physico-chemical parameters of the pre-treated wastewater from the WWTP discharged into the river, the rainfall, and the river collected at upward of WWTP junction discharge point in the river has been developed. The results show that the wastewater pre-treated by the WWTP and discharged into the river contributes to 13.72% of the river water chemistry compared to 33.64% for rainfall and 52.64% for river water before its junction with WWTP. This study revealed that during rainy season, Houet river has high concentrations of NH4+, metallic trace elements (Mn, Ni) and significant microbiological pollution due to (i) the discharge into the river of incomplete treated wastewater coming from the WWTP (ii) but also to the river itself, which minor bed is the depository of urban and domestic wastes. It is true that the river water quality is globally good for market gardening, but to ensure its long-term quality, authorities in charge of water resources and agriculture should (i) monitor and optimize WWTP wastewater treatment efficiency, (ii) and control/limit agricultural and domestic activities with potential pollution risks alongside the river.

Keywords

river, wastewater, chemistry, rainfall, trace elements, model

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Simpi B, Hiremath SM, Murthy K, Chandrashekarappa KN, Patel AN, Puttiah ET. Analysis of Water Quality Using Physico-Chemical Parameters Hosahalli Tank in Shimoga District, Karnataka, India. Global Journals Inc (USA). mai 2011;11(3).
 
[2]  Sasáková N, Gregova G, Takacova D, Mojzisova J, Papajová I, Venglovsky J, et al. Pollution of Surface and Ground Water by Sources Related to Agricultural Activities. Frontiers in Sustainable Food Systems. 27 juill 2018;2.
 
[3]  Mateo-Sagasta J, Zadeh SM, Turral H, Burke J. Water pollution from agriculture: a global review. Executive summary. Rome: FAO Colombo, Sri Lanka: International Water Management; 2017.
 
[4]  Li Y, Wang M, Chen X, Cui S, Hofstra N, Kroeze C, et al. Multi-pollutant assessment of river pollution from livestock production worldwide. Water Research. 1 févr 2022; 209: 117906.
 
[5]  Dagne DH, Owens EW, Tchoonwou PB. Impact of animal waste application on runoff water quality in field experimental plots. International Journal of Environmental Research and Public Health. août 2005; 2(2): 8.
 
[6]  Akinbile CO, Erazua AE, Babalola TE, Ajibade FO. Environmental implications of animal wastes pollution on agricultural soil and water quality. Soil and Water Research. 2016; 11: 172-80.
 
[7]  Mahfooz Y, Yasar A, Sohail MT, Tabinda AB, Rasheed R, Irshad S, et al. Investigating the drinking and surface water quality and associated health risks in a semi-arid multi-industrial metropolis (Faisalabad), Pakistan. Environmental Science and Pollution Research. 1 juill 2019; 26(20): 20853-65.
 
[8]  Sujaul IM, Hossain MA, Nasly MA, Sobahan MA. Effect of Industrial Pollution on the Spatial Variation of Surface Water Quality. American Journal of Environmental Sciences [Internet]. 2013; 9(2). Disponible sur: https://thescipub.com/abstract/ajessp.2013.120.129.
 
[9]  Breida M, Younssi S, Ouammou M, Mohamed MB, Hafsi M. Pollution of Water Sources from Agricultural and Industrial Effluents: Special Attention to NO 3ˉ, Cr(VI), and Cu(II). In 2019.
 
[10]  Mchiouer F, El Ouarghi H, Benyoussef S, Abourrich M. Assessment of health risks related to groundwater consumption in Al-Hoceima region. E3S Web Conf [Internet]. 2021; 240.
 
[11]  Akhtar N, Izzuddin M, Ishak S, Ahmad M, Umar K, Md Yusuff MS, et al. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water. 26 mars 2021; 13.
 
[12]  Mayembe J, Thevenon Florian, Laffite A, Sivaligam P, Ngelinkoto P, Mulaji CK, et al. High levels of faecal contamination in drinking groundwater and recreational water due to poor sanitation, in the sub-rural neighbourhoods of Kinshasa, Democratic Republic of the Congo. International Journal of hygiene and environmental health. Avril 2018; 221(3): 9.
 
[13]  Nienie AB, Sivalingam P, Laffite A, Ngelinkoto P, Otamonga JP, Matand A, et al. Microbiological quality of water in a city with persistent and recurrent waterborne diseases under tropical sub-rural conditions: The case of Kikwit City, Democratic Republic of the Congo. International Journal of Hygiene and Environmental Health. 1 juill 2017; 220(5): 8208.
 
[14]  Kilunga PI, Sivalingam P, Laffite A, Grandjean D, Mulaji CK, de Alencastro LF, et al. Accumulation of toxic metals and organic micro-pollutants in sediments from tropical urban rivers, Kinshasa, Democratic Republic of the Congo. Chemosphere. 1 juill 2017; 179: 3748.
 
[15]  Kostyla C, Bain R, Cronk R, Bartram J. Seasonal variation of fecal contamination in drinking water sources in developing countries: A systematic review. Science of The Total Environment. 1 mai 2015; 514: 33343.
 
[16]  Mounjid J, Cohen N, Belhouari A, Oubraim S. Contribution à l’évaluation de la qualité physico-chimique du cours d’eau Merzeg (Périurbain de Casablanca, Maroc). Larhyss Journal, ISS? 1112-3680. Juin 2014; (18): 3151.
 
[17]  Ugya AY, Hasan DB, Ari HA, Ajibade FO, Imam TS, Abba A, et al. Natural freshwater microalgae biofilm as a tool for the clean-up of water resulting from mining activities. All Life. 1 janv 2020; 13(1): 64457.
 
[18]  Wang X, Gao Y, Jiang X, Zhang Q, Liu W. Analysis on the Characteristics of Water Pollution Caused by Underground Mining and Research Progress of Treatment Technology. Wu H, éditeur. Advances in Civil Engineering. 19 mai 2021; 2021: 9984147.
 
[19]  Jhariya D, Khan R, Thakur GS. Impact of Mining Activity on Water Resource : An Overview study. 2016.
 
[20]  Carpenter SR, Stanley EH, Vander Zanden MJ. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu Rev Environ Resour. 21 nov 2011; 36(1): 7599.
 
[21]  Peel J, Sands P, éditeurs. Freshwater resources. In: Principles of International Environmental Law [Internet]. 3e éd. Cambridge: Cambridge University Press; 2012. p. 30341. Disponible sur: https://www.cambridge.org/core/books/principles-of-international-environmental-law/freshwater-resources/892C4753FC8CA062DA24E54B5CD7C792.
 
[22]  Meï L. La ressource en eau au Burkina Faso gestion et enjeux. Persée. 2003; 19.
 
[23]  Sauret ESG. Etude des potentialités hydrogéologiques d’une plaine alluviale en relation avec les eaux souterraines et de surface dans un contexte d’agriculture irriguée (Burkina Faso). Université de Liège (ULG); Thèse de doctorat; 2013.
 
[24]  Tirogo J, Jost A, Biaou A, Valdes D, Koussoube Y, Ribstein P. Climate Variability and Groundwater Response: A Case Study in Burkina Faso (West Africa). Water. 27 avr 2016; 8: 171.
 
[25]  Robineau O. Vivre del’agriculture dans la ville africaine  :une géographie des arrangements entre acteurs à Bobo-Dioulasso,BurkinaFaso. Thèse préparée au sein de l’unité de recherche UMR 951 Innovation Et de l’Ecole Doctorale 60 - TTSD, Géographie et Aménagement de l’Espace; 2013.
 
[26]  Dende L Z. Evaluation de la qualité physico-chimique et microbiologique des eaux de la rivière Houet recevant les eaux de la STEP et leur aptitude d’usage a l’irrigation d’appoint en saison pluvieuse : cas du site maraicher de Dogona à Bobo-Dioulasso. Institut International d’Ingénierie de l’Eau et de l’Environnement ; 2022.
 
[27]  Ouedraogo RA. Impact des pratiques de gestion de la fertilité sur la qualité des sols sous cultures maraîchères à Bobo-Dioulasso (Burkina Faso). Université Catholique de Louvain Faculté D’ingénierie biologique, agronomique et environnementale Earth and Life Institute; 2019.
 
[28]  ONEA. Rapport d’activités Grand Public. Office national de l’eau et de l’assainissement ; 2019.
 
[29]  Ouattara Y, Guigemde I, Diendere F, Tall N, N’diaye S, DIARRA J, et al. Le marigot houët à Bobo-Dioulasso : une question de santé publique ? Juin 2013;6 No. 5: 13p.
 
[30]  Rahimi MH, N K, M S, M K. Quality assessment of treated wastewater to be reused in agriculture. Department of Geology, Faculty of Earth Sciences, Shahid Chamran University, Ahvaz, Iran. 1 avr 2018; 14.
 
[31]  Ahmad S, Ali U. Hydrochemical characteristics and spatial analysis of groundwater quality in parts of Bundelkhand Massif, India. Applied Water Science (2018).
 
[32]  Jiang Y, Gui H, Wang C, Chen C, Zhang Y, Huang Y. Hydrochemical Characteristics and Water Quality Evaluation of Rivers in Different Regions of Cities: A Case Study of Suzhou City in Northern Anhui Province, China. Water, www.mdpi.com/journal/water. mars 2020.
 
[33]  FAO. L’irrigation avec des eaux ussées traitées. Organisation des Nations Unies pour l’Alimentation et l’Agriculture; 2003.
 
[34]  OMS V1. Directives OMS pour l’utilisation sans risques des eaux usées, des excreta et des eaux ménagères; Volume 1: Considérations d’ordre politique et réglementaire. 2012.
 
[35]  OMS V2. Directives OMS pour l’utilisation sans risques des eaux usées, des excreta et des eaux ménagères; Volume 2 Utilisation des eaux usées en agriculture: 2012.
 
[36]  Lee DR. A device for measuring seepage flux in lakes and estuaries. Limnology and Oceanography. 1977; 22(1).
 
[37]  Brodie RS, Baskaran S, Ransley T, Spring J. Seepage meter: progressing a simple method of directly measuring water flow between surface water and groundwater systems. Australian Journal of Earth Sciences. 1 févr 2009; 56(1): 311.
 
[38]  Rosenberry DO. A seepage meter designed for use in flowing water. Journal of Hydrology. 15 sept 2008; 359(1): 11830.
 
[39]  Carrera J, Vazquez S, O C, X SV. A methodology to compute mixing ratios with uncertain end-members. Water Resources Research. 2004; 40.
 
[40]  Cybèle C. Fonctionnement hydrogéologique et processus de transport dans les aquifères karstiques du Massif du Jura. Hal archives-ouvertes.fr, thèse de doctorat; spécialité Science de la voe et de l’Environnement; 2018.
 
[41]  Bélanger N, Hendershot WH, Bouchard M, Jolicoeur S. Identification des compartiments responsables de la qualité des eaux de surface d’un petit bassin versant du centre du Nouveau-Brunswick (Canada): application et analyse du modèle hydrochimique EMMA. Revue des sciences de l’eau Journal of Water Science. nov 1997; 11(1).
 
[42]  Roques C, Aquilina L, Bour O, Maréchal J christophe, Dewandel B, Pauwels H, et al. Groundwater sources and geochemical processes in a crystalline fault aquifer. ELSEVIER; journal of Hydrology. 2014; 519.
 
[43]  Cybèle C. Fonctionnement hydrogéologique et processus de transport dans les aquifères karstiques du Massif du Jura. Hal archives-ouvertes.fr, thèse de doctorat; spécialité Science de la voe et de l’Environnement; 2018.
 
[44]  Roques C, Aquilina L, Bour O, Maréchal J christophe, Dewandel B, Pauwels H, et al. Groundwater sources and geochemical processes in a crystalline fault aquifer. ELSEVIER; journal of Hydrology. 2014; 519.
 
[45]  Morales-Casique E. Mixing of groundwaters with uncertain end-members: case study in the Tepalcingo-Axochiapan aquifer, Mexico. Hydrogeology Journal. 1 mai 2012; 20(3): 60513.
 
[46]  Djeddi H. Utilisation des eaux d’une sation d’épuration pour l’irigation des essences forestières urbaines. Université Mentouri Constantine; Faculté des sciences de la nature et de la vie; 2007.
 
[47]  Soumbougma A, Kadeba A, Compaore NF, Boussim JI. Caractérisation des éffluents industriels et effets de leur utilisation agricoles sur la santé des popupaltions : cas de la commune de Bobo_Diuolasso. Rev. Ivoir. Sci. Technol., 36 (2020) 52-68; 2020.
 
[48]  Ouattara Y, Guigemde I, Diendere F, Tall N, N’diaye S, DIARRA J, et al. Le marigot houët à Bobo-Dioulasso : une question de santé publique ? oct 2012; 13p.
 
[49]  Wu L, Qiu XW, Wang T, Tao K, Bao LJ, Zeng EY. Water Quality and Organic Pollution with Health Risk Assessment in China: A Short Review. ACS EST Water. 12 août 2022;2(8): 127988.
 
[50]  Derradji F, Bousnoubra H, Kherici N, Romeo M, Caruba R. Impact de la pollution organique sur la qualité des eaux superficielles dans le Nord Est algérien. 2007;18: 237.
 
[51]  Kupiec JM, Staniszewski R, Kayzer D. Assessment of Water Quality Indicators in the Orla River Nitrate Vulnerable Zone in the Context of New Threats in Poland. Water. 2022; 14(15).
 
[52]  Djeddi H. Utilisation des eaux d’une sation d’épuration pour l’irigation des essences forestières urbaines. Université Mentouri Constantine; Faculté des sciences de la nature et de la vie; 2007.
 
[53]  Azzaoui S, El Hanbali M, Leblanc M. Cuivre, plomb, fer et manganèse dans le bassin versant du Sebou ; Sources d’apport et impact sur la qualité des eaux de surface. Water Quality Resource Journal Canada. 2002; 37(4): 77384.
 
[54]  Eblin SG, Sombo AP, Soro GM, Aka N, Kambiré O, Soro N. Hydrochimie des eaux de surface de la région d’Adiaké (sud-est côtier de la Côte d’Ivoire). Journal of Applied Biosciences. 2014; 75.
 
[55]  Onifida TU. Evaluation des performances et optimisation technique de la station d’epuration de Bobo-Dioulasso (Burkina Fsao. 2iE, Institut international d’ingénierie de l’eau et de l’environnement; 2011.
 
[56]  Rodier J. L’analyse de l’eau. 2009.
 
[57]  Gendre F, Fournier G. Étude des relations entre le 16 PF, L’ACL et L’IPH. Presses Universitaires de France. 7 avr 2022; 41(1): 55-65.
 
[58]  Sauret ESG. Etude des potentialités hydrogéologiques d’une plaine alluviale en relation avec les eaux souterraines et de surface dans un contexte d’agriculture irriguée (Burkina Faso). Université de Liège (ULG); Thèse de doctorat; 2013.
 
[59]  Compaore E, Nanéma L. Compostage et qualité du compost de déchets urbains solides de la ville de Bobo-Dioulasso, Burkina Faso. Tropicultura. 1 janv 2010; 28.
 
[60]  Akouze R. Activités anthropiques industrielles et qualité des eaux dans un bassin versant : cas du bassin versant de Kossodo. Institut International d’Ingénierie de l’Eau et de l’Environnement; 2010.
 
[61]  Koffi JT, Perrin JL, Seguis L, Kamagate B, Droh LG. Comparative study of physicochemical parameters and dissolved heavy metal dynamics in tropical waters (Bété, Mé, Djibi Rivers and Aghien lagoon) in south of Ivory Coast, West Africa. International Journal of Innovation and Scientific Research. 2018; 39(2): 15.
 
[62]  Tuo DA, Soro MB, Trokourey A, Bokra Y. Assessment of Waters Contamination by Nutrients and Heavy Metals in the Ebrie Lagoon (Abidjan, Ivory Coast). Research Journal of Environmental Toxicology. 2012; 6(5): 11.
 
[63]  Naga C, Talnan Jean Honoré C, Delfin OA, Bernard YO, Guillaume ZS, Henoc Sosthène A, et al. Spatio-Temporal Analysis and Water Quality Indices (WQI): Case of the Ébrié Lagoon, Abidjan, Côte d’Ivoire. Hydrology. 2018; 5(3).
 
[64]  Benkaddour B. Contribution à l’étude de la contamination des eaux et des sédiments de l’Oued Cheliff (Algérie). Université de perpigna via domitia et université de mostaganeme; 2018.
 
[65]  Hanane T, Kachi S. Evaluation of heavy metal contamination in sediments of the Seybouse River, Guelma – Annaba, Algeria. Journal of Water and Land Development. 1 mars 2019; 40: 81-6.
 
[66]  Ouiza ould ali, Vouvé F, Abdelmalek F, Aubert D, Rouillon R, Addou A. Metallic Contamination of Water and Sediments of “Hillil River” (North-West of Algeria) Near Wild Dump Site. In 2018. p. 1367-8.
 
[67]  Boumaza B, Chekushina TV, Vorobyev KA, Schesnyak LE. The heavy metal pollution in groundwater, surface and spring water in phosphorite mining area of Tebessa (Algeria). Environmental Nanotechnology, Monitoring & Management. 1 déc 2021; 16:100591.
 
[68]  Tabeche A, Belhoucine F, Bouhadiba S, Alioua A, Belhabib L, Yamina Leila R. EVALUATION OF THE METALLIC TRACE ELEMENT CONTAMINATION OF COMMON SOLE (SOLEA SOLEA, L. 1758) BY THE WESTERN ALGERIAN COAST. Applied Ecology and Environmental Research. 1 oct 2021; 19: 4641-64.
 
[69]  Khaled-Khodja S, Cherif S, Durand G. Seasonal assessment of metal trace element contamination by PCA in Seybouse Wadi (Algeria). Water Science and Technology: Water Supply. 16 janv 2018;18:ws2018010.
 
[70]  Guezgouz N, Parisi C, Boubsil S, Grieco G, Hana SA, Guerriero G. Heavy Metals Assessment in the Medjerda River Basin (Northeastern Algeria): A Preliminary Water Analysis and Toad Skin Biopsy. Proceedings of the Zoological Society. 1 mars 2021;74(1): 10413.
 
[71]  Haidar C. Évaluation de la qualité de l’eau du bassin supérieur de la rivière du Litani, Liban : approche hydrogéochimique. Hal open science; 2018.
 
[72]  Korfali SI, Davies BE. Total and Extractable Trace Elements in Lebanese River Sediments: Dry Season Data. Environmental Geochemistry and Health. 1 déc 2000; 22(4): 26573.
 
[73]  Nehme N, Haydar C, Koubaissy B, Fakih M, Awad S, Toufaily J, et al. The Distribution of Heavy Metals in the Lower River Basin, Lebanon. Physics Procedia. 1 janv 2014; 55: 45663.
 
[74]  Badr R, Holail H, Olama Z. Water quality assessment of Hasbani river in south Labanon : microbiological and chemical characteristics and their impact on the ecosystem. Journal of Global Biosciences. avr 2014; 3(2): 16.
 
[75]  Haidar C. Évaluation de la qualité de l’eau du bassin supérieur de la rivière du Litani, Liban : approche hydrogéochimique. Hal open science; 2018.
 
[76]  Senou I, Nimi M, Sanogo S, B.Nacro H, N.Some A. Study of physicochemical parameters and level of cadmium and lead contamination in irrigation water in market garden areas in West Burkina Faso. International Journal of Environment, Agriculture and Biotechnology. 2020; 5(2): 24561878.