Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2022, 10(3), 72-87
DOI: 10.12691/AJWR-10-3-1
Original Research

Development of Satellite Data-Based Rainfall Intensity-Duration-Frequency Curves for Nigeria

Oluwaseye A. Agunbiade1, , Onemayin D. Jimoh1 and Martins Y. Otache2

1Department of Civil Engineering, Federal University of Technology, Minna, Nigeria

22Department of Agricultural and Bio-resources Engineering, Federal University of Technology, Minna, Nigeria

Pub. Date: November 13, 2022

Cite this paper

Oluwaseye A. Agunbiade, Onemayin D. Jimoh and Martins Y. Otache. Development of Satellite Data-Based Rainfall Intensity-Duration-Frequency Curves for Nigeria. American Journal of Water Resources. 2022; 10(3):72-87. doi: 10.12691/AJWR-10-3-1

Abstract

The paucity of spatially representative sub-daily rainfall data in Nigeria has caused difficulty in the determination of design rainfall necessary for event-based flood modelling. Previous work on the development of Intensity-Duration-Frequency (IDF) curves for Nigeria was done in the 1980s based on historical rainfall data between 1948-1978 at 35 locations in the country (referred to as Federal Ministry of Works-IDF: FMW-IDF); however, extensive application of these IDF curves has been hampered by the vagaries of climate change. Taking advantage of current technological advancements in remote sensing for rainfall estimation, the Tropical Rainfall Measuring Mission (TRMM) Satellite-based estimates was selected amongst four other rainfall products for developing the updated IDF curves. Results indicate that the TRMM product can successfully be applied to develop more spatially representative IDF curves for Nigeria. This work hereby provides 72 locations nationwide with relevant parameters to readily compute rainfall intensity values for the 2yr, 5yr, 10yr, 25yr, 50yr, and 100yr return periods, this carries overarching implications for urban flood design and management in the Country.

Keywords

TRMM, IDF, design storm, satellite rainfall estimate, Nigeria

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  Chow, V.T., Maidment, D.R., and Mays, L.W. (1988) Applied hydrology. McGraw-Hill, Inc.
 
[2]  WMO (2008) Guide to Hydrological Practices: Hydrology - From Measurement to Hydrological Information. Sixth Edition World Meteorological Organization.
 
[3]  Mott-MacDonald (1992) Sub-Saharan Africa Hydrological Assessment. West African Countries. Country report : Nigeria. The World Bank, United Nations Development Programme, African Development Bank.
 
[4]  Bilewu, S. and Sule, B. (2015) Selection of an Appropriate Interpolation Method for Rainfall Data In Central Nigeria. Ethiopian Journal Environmental Studies Management. 8 (4), 423-432.
 
[5]  Okoro, U.K., Chen, W., Chineke, C., and Nwofor, O. (2014) Comparative analysis of gridded datasets and gauge measurements of rainfall in the Niger Delta region. Research Journal Environmental Sciences. 8 (7), 373.
 
[6]  Ologhadien, I. and Nwaogazie, I. (2017) Comparative analysis of rainfall IDF equation types for predicting rainfall intensity in Southern Nigeria. Nigerian Journal Technology. 36 (4), 1296-1302.
 
[7]  Oyebande, L. (1982) Deriving rainfall intensity-duration-frequency relationships and estimates for regions with inadequate data. Hydrological Sciences Journal. 27 (3), 353-367.
 
[8]  Oyebande, L. (1983) Rainfall Intensity, Duration, Frequency Curves and Maps for Nigeria. Department of Geography, University of Lagos.
 
[9]  FMW (2013) Nigerian Highway Manual Part 1: Design. Second Edition Federal Ministry of Works.
 
[10]  Mohymont, B., Demarée, G., and Faka, D. (2004) Establishment of IDF-curves for precipitation in the tropical area of Central Africa-comparison of techniques and results. Natural Hazards Earth System Science. 4 (3), 375-387.
 
[11]  Novella, N.S. and Thiaw, W.M. (2013) African rainfall climatology version 2 for famine early warning systems. Journal Applied Meteorology Climatology. 52 (3), 588-606.
 
[12]  Abiola, S.F., Mohd-Mokhtar, R., Ismail, W., Mohamad, N., and others (2013) Categorical statistical approach to satellite retrieved rainfall data analysis in Nigeria. Scientific Research Essays. 8 (43), 2123-2137.
 
[13]  L’Hote, Y., Dubreuil, P., and Lerique, J. (1996) Map of climate types in “Africa west of the River Congo”. Recalling and extending the use of hydrological regimes.
 
[14]  ECREEE (2017) GIS Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS Region - Technical Report on Methodology and Lessons Learnt for ECOWAS Countries. ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE).
 
[15]  Bell, T.L. and Kundu, P.K. (2003) Comparing satellite rainfall estimates with rain gauge data: Optimal strategies suggested by a spectral model. Journal Geophysical Research: Atmospheres. 108 (D3).
 
[16]  Ogbu, K.N., Houngue, N.R., Gbode, I.E., and Tischbein, B. (2020) Performance Evaluation of Satellite-Based Rainfall Products over Nigeria. Climate. 8 (10).
 
[17]  Akinyemi, D.F., Ayanlade, O.S., Nwaezeigwe, J.O., and Ayanlade, A. (2019) A comparison of the accuracy of multi-satellite precipitation estimation and ground meteorological records over Southwestern Nigeria. Remote Sensing Earth Systems Sciences. 1-12.
 
[18]  Nwachukwu, P.N., Satge, F., Yacoubi, S.E., Pinel, S., and Bonnet, M.-P. (2020) From TRMM to GPM: How Reliable Are Satellite-Based Precipitation Data across Nigeria? Remote Sensing. 12 (23), 3964.
 
[19]  Usman, M., Nichol, J.E., Ibrahim, A.T., and Buba, L.F. (2018) A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria. Agricultural Forest Meteorology. 260 273-286.
 
[20]  Akinsanola, A.A., Ogunjobi, K.O., Ajayi, V.O., Adefisan, E.A., Omotosho, J.A., and Sanogo, S. (2017) Comparison of five gridded precipitation products at climatological scales over West Africa. Meteorology Atmospheric Physics. 129 (6), 669.
 
[21]  Bodian, A., Dezetter, A., Deme, A., and Diop, L. (2016) Hydrological evaluation of TRMM rainfall over the upper Senegal river basin. Hydrology. 3 (2), 15.
 
[22]  Adeyewa, Z.D. and Nakamura, K. (2003) Validation of TRMM radar rainfall data over major climatic regions in Africa. Journal Applied Meteorology. 42 (2), 331-347.
 
[23]  Adjei, K.A., Ren, L., Appiah-Adjei, E.K., Kankam-Yeboah, K., and Agyapong, A.A. (2012) Validation of TRMM data in the Black Volta Basin of Ghana. Journal Hydrologic Engineering. 17 (5), 647-654.
 
[24]  Ayehu, G.T., Tadesse, T., Gessesse, B., and Dinku, T. (2018) Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmospheric Measurement Techniques. 11 (4), 1921-1936.
 
[25]  Bayissa, Y., Tadesse, T., Demisse, G., and Shiferaw, A. (2017) Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sensing. 9 (7), 669.
 
[26]  Belayneh, A., Sintayehu, G., Gedam, K., and Muluken, T. (2020) Evaluation of satellite precipitation products using HEC-HMS model. Modeling Earth Systems Environment. 6 (4), 2015-2032.
 
[27]  Casse, C., Gosset, M., Peugeot, C., Pedinotti, V., Boone, A., Tanimoun, B., et al. (2015) Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmospheric Research. 163 162-176.
 
[28]  Le Coz, C. and Van De Giesen, N. (2020) Comparison of rainfall products over sub-saharan africa. Journal Hydrometeorology. 21 (4), 553-596.
 
[29]  Dembélé, M. and Zwart, S.J. (2016) Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal Remote Sensing. 37 (17), 3995-4014.
 
[30]  Diem, J.E., Hartter, J., Ryan, S.J., and Palace, M.W. (2014) Validation of satellite rainfall products for western Uganda. Journal Hydrometeorology. 15 (5), 2030-2038.
 
[31]  Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S., and Ropelewski, C. (2007) Validation of satellite rainfall products over East Africa’s complex topography. InternationalJournal Remote Sensing. 28 (7), 1503-1526.
 
[32]  Dinku, T., Connor, S.J., and Ceccato, P. (2010) Comparison of CMORPH and TRMM-3B42 over mountainous regions of Africa and South America. in: SatelliterainfallApplications surface hydrology, Springer, pp. 193-204.
 
[33]  Abd Elbasit, M.A., Adam, E.O., Abu-Talib, K., Ahmed, F., Yasuda, H., and Ojha, C. (2014) Validation of Satellite-based Rainfall Measurements in Arid and Semi-arid Regions of Sudan. in: Proceedings 10th International Conference AARSE, p. 93.
 
[34]  Bakary, F., Abdou, A., DACOSTA, H., Bodian, A., Salif, D., and Descroix, L. (2018) Assessment of satellite rainfall products for stream flow simulation in Gambia watershed. African Journal Environmental Science Technology. 12 (12), 501-513.
 
[35]  Gebrechorkos, S.H., Hülsmann, S., and Bernhofer, C. (2018) Evaluation of multiple climate data sources for managing environmental resources in East Africa. Hydrology Earth System Sciences. 22 (8), 4547-4564.
 
[36]  Gebremicael, T.G., Mohamed, Y.A., Zaag, P. van der, Berhe, A.G., Haile, G.G., Hagos, E.Y., et al. (2017) Comparison and validation of eight satellite rainfall products over the rugged topography of Tekeze-Atbara Basin at different spatial and temporal scales. Hydrology Earth System Sciences Discussions. 1-31.
 
[37]  Nicholson, S.E., Some, B., McCollum, J., Nelkin, E., Klotter, D., Berte, Y., et al. (2003) Validation of TRMM and other rainfall estimates with a high-density gauge dataset for West Africa. Part II: Validation of TRMM rainfall products. Journal Applied Meteorology. 42 (10), 1355-1368.
 
[38]  Oyerinde, G.T., Fademi, I.O., and Denton, O.A. (2017). Modeling runoff with satellite-based rainfall estimates in the Niger basin. Cogent Food & Agriculture. 3 (1), 1363340.
 
[39]  Hamis, M.M. (2013) Validation of Satellite Rainfall Estimates Using Gauge Rainfall Over Tanzania, University of Nairobi, 2013.
 
[40]  Almazroui, M. (2011) Calibration of TRMM rainfall climatology over Saudi Arabia during 1998-2009. Atmospheric Research. 99 (3-4), 400-414.
 
[41]  Agha Kouchak, A., Behrangi, A., Sorooshian, S., Hsu, K., and Amitai, E. (2011) Evaluation of satellite-retrieved extreme precipitation rates across the central United States. Journal Geophysical Research: Atmospheres. 116 (D2),.
 
[42]  Nair, A.S. and Indu, J. (2017) Performance assessment of multi-source weighted-ensemble precipitation (MSWEP) product over India. Climate. 5 (1), 2.
 
[43]  Bajracharya, S.R., Palash, W., Shrestha, M.S., Khadgi, V.R., Duo, C., Das, P.J., et al. (2015) Systematic evaluation of satellite-based rainfall products over the Brahmaputra basin for hydrological applications. Advances Meteorology. 2015.
 
[44]  Barbosa, L., Freitas, E., Almeide, C., and Melo, D. (2015) Rainfall in an experimental watershed: a comparison between observed and TRMM 3B42V7 dataset. The International Archives Photogrammetry, Remote Sensing Spatial Information Sciences. 40 (7), 1447.
 
[45]  Jiang, Q., Li, W., Wen, J., Fan, Z., Chen, Y., Scaioni, M., et al. (2019) Evaluation of satellite-based products for extreme rainfall estimations in the eastern coastal areas of China. Journal Integrative Environmental Sciences. 16 (1), 191-207.
 
[46]  Beck, H.E., Vergopolan, N., Pan, M., Levizzani, V., Van Dijk, A.I., Weedon, G.P., et al. (2017) Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology Earth System Sciences. 21 (12), 6201-6217.
 
[47]  Bui, H.T., Ishidaira, H., and Shaowei, N. (2019) Evaluation of the use of global satellite–gauge and satellite-only precipitation products in stream flow simulations. Applied Water Science. 9 (3), 1-15.
 
[48]  Blacutt, L.A., Herdies, D.L., Gonçalves, L.G.G. de, Vila, D.A., and Andrade, M. (2015) Precipitation comparison for the CFSR, MERRA, TRMM3B42 and Combined Scheme datasets in Bolivia. Atmospheric Research. 163 117-131.
 
[49]  Caroletti, G.N., Coscarelli, R., and Caloiero, T. (2019) Validation of satellite, reanalysis and RCM data of monthly rainfall in Calabria (Southern Italy). Remote Sensing. 11 (13), 1625.
 
[50]  Chen, C., Chen, Q., Duan, Z., Zhang, J., Mo, K., Li, Z., et al. (2018) Multiscale comparative evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products from 2015 to 2017 over a climate transition area of China. Remote Sensing. 10 (6), 944.
 
[51]  Conti, F.L., Hsu, K.-L., Noto, L.V., and Sorooshian, S. (2014) Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmospheric Research. 138 189-204.
 
[52]  Contractor, S., Alexander, L.V., Donat, M.G., and Herold, N. (2015) How well do gridded datasets of observed daily precipitation compare over Australia? Advances Meteorology. 2015.
 
[53]  Ghulami, M., Babel, M.S., and Singh Shrestha, M. (2017) Evaluation of gridded precipitation datasets for the Kabul Basin, Afghanistan. International Journal Remote Sensing. 38 (11), 3317-3332.
 
[54]  Guo, R. and Liu, Y. (2016) Evaluation of satellite precipitation products with rain gauge data at different scales: Implications for hydrological applications. Water. 8 (7), 281.
 
[55]  Zhao, H., Yang, S., Wang, Z., Zhou, X., Luo, Y., and Wu, L. (2015) Evaluating the suitability of TRMM satellite rainfall data for hydrological simulation using a distributed hydrological model in the Weihe River catchment in China. Journal Geographical Sciences. 25 (2), 177-195.
 
[56]  Harikumar, R., Varikoden, H., Sampath, S., Mohan Kumar, G., and Gairola, R. (2008) Comparison of TRMM precipitation data with Micro Rain Radar and Disdrometer data during different Monsoon seasons. 37th COSPAR Scientific Assembly. 37 2535.
 
[57]  Zambrano-Bigiarini, M., Nauditt, A., Birkel, C., Verbist, K., and Ribbe, L. (2017) Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrology Earth System Sciences. 21 (2), 1295-1320.
 
[58]  Mahbod, M., Shirvani, A., and Veronesi, F. (2019) A comparative analysis of the precipitation extremes obtained from tropical rainfall-measuring mission satellite and rain gauges datasets over a semiarid region. International Journal Climatology. 39 (1), 495-515.
 
[59]  Try, S., Tanaka, S., Tanaka, K., Sayama, T., Oeurng, C., Uk, S., et al. (2020) Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin. Plo Sone. 15 (1), e0226814.
 
[60]  Xue, X., Hong, Y., Limaye, A.S., Gourley, J.J., Huffman, G.J., Khan, S.I., et al. (2013) Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal Hydrology. 499. 91-99.
 
[61]  Michot, V., Vila, D., Arvor, D., Corpetti, T., Ronchail, J., Funatsu, B.M., et al. (2018) Performance of TRMM TMPA 3B42 V7 in replicating daily rainfall and regional rainfall regimes in the Amazon basin (1998–2013). Remote Sensing. 10 (12), 1879.
 
[62]  Ayman G, A., Mohamed, E., Ashraf, E., and Hesham, E. (2011) Developing intensity-duration-frequency curves in scarce data region: an approach using regional analysis and satellite data. Engineering. 2011.
 
[63]  Endreny, T.A. and Imbeah, N. (2009) Generating robust rainfall intensity–duration–frequency estimates with short-record satellite data. Journal hydrology. 371 (1), 182–191.
 
[64]  Faridzad, M., Yang, T., Hsu, K., Sorooshian, S., and Xiao, C. (2018) Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information. Journal Hydrology. 563.
 
[65]  Schiavo Bernardi, E., Allasia, D., Basso, R., Freitas Ferreira, P., and Tassi, R. (2015) TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization. Proceedings International AssociationHydrologicalSciences. 369 163-168.
 
[66]  Bertini, C., Buonora, L., Ridolfi, E., Russo, F., and Napolitano, F. (2020) On the Use of Satellite Rainfall Data to Design a Dam in an Ungauged Site. Water. 12 (11), 3028.
 
[67]  Courty, L.G., Wilby, R.L., Hillier, J.K., and Slater, L.J. (2019) Intensity-duration-frequency curves at the global scale. EnvironmentalResearchLetters. 14 (8), 084045.
 
[68]  Demirdjian, L., Zhou, Y., and Huffman, G.J. (2018) Statistical modeling of extreme precipitation with TRMM data. Journal applied meteorologyClimatology. 57 (1), 15-30.
 
[69]  Gado, T.A., Hsu, K., and Sorooshian, S. (2017) Rainfall frequency analysis for ungauged sites using satellite precipitation products. Journal hydrology. 554 646-655.
 
[70]  Marra, F., Morin, E., Peleg, N., Mei, Y., and Anagnostou, E.N. (2016) Comparing Intensity–Duration–Frequency curves derived from CMORPH and radar rainfall estimates over the Eastern Mediterranean. Hydrol.EarthSyst.Sci.Discuss., doi. 10.
 
[71]  Matos, J.E. and others (2018) Generic Method for Merging Satellite and Historical Ground Station Data to Design Rainfall Intensity Duration Frequency (IDF) Curves in Recordless Sub-Saharian Countries. Open Journal Modern Hydrology. 8 (04), 101.
 
[72]  Noor, M., Ismail, T., Shahid, S., Asaduzzaman, M., and Dewan, A. (2021). Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia. Atmospheric Research. 248 105203.
 
[73]  Ombadi, M., Nguyen, P., Sorooshian, S., and Hsu, K. (2018) Developing intensity-duration-frequency (IDF) curves from satellite-based precipitation: Methodology and evaluation. Water Resources Research. 54 (10), 7752-7766.
 
[74]  Sun, Y., Wendi, D., Kim, D.E., and Liong, S.-Y. (2019) Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. Geoscience Letters. 6 (1), 1-12.
 
[75]  Yang, Y., Tang, G., Lei, X., Hong, Y., and Yang, N. (2018) Can satellite precipitation products estimate probable maximum precipitation: A comparative investigation with gauge data in the Dadu River Basin. Remote Sensing. 10 (1), 41.
 
[76]  Zhou, Y., Lau, W.K., and Huffman, G.J. (2015) Mapping TRMM TMPA into average recurrence interval for monitoring extreme precipitation events. Journal Applied Meteorology Climatology. 54 (5), 979-995.
 
[77]  Zorzetto, E. and Marani, M. (2019) Downscaling of rainfall extremes from satellite observations. Water Resources Research. 55 (1), 156-174.
 
[78]  Huffman, G.J., Adler, R.F., Bolvin, D.T., and Nelkin, E.J. (2010) The TRMM multi-satellite precipitation analysis (TMPA). in: Satelliterainfall Applications surface hydrology, Springer, pp. 3-22.
 
[79]  Joyce, R.J., Janowiak, J.E., Arkin, P.A., and Xie, P. (2004) CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal hydrometeorology. 5 (3), 487-503.
 
[80]  Nguyen, P., Shearer, E.J., Tran, H., Ombadi, M., Hayatbini, N., Palacios, T., et al. (2019) The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Scientificdata. 6 (1), 1-10.
 
[81]  Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K.-L., Joyce, R.J., Kidd, C., et al. (2020) Integrated multi-satellite retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). in: Satelliteprecipitation Measurement, Springer, pp. 343-353.
 
[82]  Huffman, G.J. (2019) The transition in multi-satellite products from TRMM to GPM (TMPA to IMERG). NASA Goddard Space Flight Center Science Systems Applications. 27thAugust.
 
[83]  Bárdossy, A. and Pegram, G. (2018) Intensity–duration–frequency curves exploiting neighbouring extreme precipitation data. Hydrological Sciences Journal. 63 (11), 1593-1604.
 
[84]  Koutsoyiannis, D., Kozonis, D., and Manetas, A. (1998) A mathematical framework for studying rainfall intensity-duration-frequency relationships. Journal Hydrology. 206 (1), 118-135.
 
[85]  Baghirathan, V.R. and Shaw, E.M. (1978) Rainfall depth-duration-frequency studies for Sri Lanka. Journal Hydrology. 37 (3-4), 223-239.
 
[86]  Bell, F.C. (1969) Generalized rainfall-duration-frequency relationships. Journal hydraulics division. ASCE 95 311-327.
 
[87]  Papalexiou, S.M. and Koutsoyiannis, D. (2013) Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resources Research. 49 (1), 187-201.
 
[88]  Koutsoyiannis, D. (2004) Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation. Hydrological sciences Journal. 49 (4).
 
[89]  Koutsoyiannis, D. (2004) Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records. Hydrological Sciences Journal. 49 (4).
 
[90]  Stedinger, J., Vogel, R., and Foufoula-Georgiou, E. (1993). Chapter 18, Frequency analysis of extreme events, Handbook of Hydrology, edited by Maidment, DR. DRMc Graw Hill, New York.
 
[91]  Koutsoyiannis, D. and Papalexiou, S.M. (2017) Extreme rainfall: Global perspective. Handbook Applied Hydrology; McGraw-Hill: New York, NY, USA. 74-1.