Skip Navigation Links.
Collapse <span class="m110 colortj mt20 fontw700">Volume 12 (2024)</span>Volume 12 (2024)
Collapse <span class="m110 colortj mt20 fontw700">Volume 11 (2023)</span>Volume 11 (2023)
Collapse <span class="m110 colortj mt20 fontw700">Volume 10 (2022)</span>Volume 10 (2022)
Collapse <span class="m110 colortj mt20 fontw700">Volume 9 (2021)</span>Volume 9 (2021)
Collapse <span class="m110 colortj mt20 fontw700">Volume 8 (2020)</span>Volume 8 (2020)
Collapse <span class="m110 colortj mt20 fontw700">Volume 7 (2019)</span>Volume 7 (2019)
Collapse <span class="m110 colortj mt20 fontw700">Volume 6 (2018)</span>Volume 6 (2018)
Collapse <span class="m110 colortj mt20 fontw700">Volume 5 (2017)</span>Volume 5 (2017)
Collapse <span class="m110 colortj mt20 fontw700">Volume 4 (2016)</span>Volume 4 (2016)
Collapse <span class="m110 colortj mt20 fontw700">Volume 3 (2015)</span>Volume 3 (2015)
Collapse <span class="m110 colortj mt20 fontw700">Volume 2 (2014)</span>Volume 2 (2014)
Collapse <span class="m110 colortj mt20 fontw700">Volume 1 (2013)</span>Volume 1 (2013)
American Journal of Water Resources. 2022, 10(2), 46-53
DOI: 10.12691/AJWR-10-2-2
Original Research

Impact of Fluoridated Waters on the Density of Mosquito Larvae in the Municipality of Dassa-Zoume in Benin

Kitidjo Victor Jacques SOSSOU1, Waris Kéwouyèmi CHOUTI1, 2, , Luc DJOGBENOU3, Romaric AKOTON3 and Carine Nelly KELOME4

1Laboratory of Applied Hydrology, National Institute of Water (INE), University of Abomey-Calavi 01 BP: 526 Cotonou, Benin

2Laboratory of Inorganic Chemistry and the Environment, Faculty of Science and Technology (FAST), University of Abomey-Calavi BP: 4521 Cotonou, Benin

3Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526 Cotonou, Benin

4Laboratory of Geology, Mining and Environment

Pub. Date: July 15, 2022

Cite this paper

Kitidjo Victor Jacques SOSSOU, Waris Kéwouyèmi CHOUTI, Luc DJOGBENOU, Romaric AKOTON and Carine Nelly KELOME. Impact of Fluoridated Waters on the Density of Mosquito Larvae in the Municipality of Dassa-Zoume in Benin. American Journal of Water Resources. 2022; 10(2):46-53. doi: 10.12691/AJWR-10-2-2

Abstract

Mosquitoes are sources of nuisance and vectors of pathogenic agents for humans and animals. The fight against these insects requires a very in-depth knowledge of the ecology of their places of development. This is the reason why a study on the impact of fluoride on the development of mosquitoes was carried out in the municipality of Dassa-Zoumè, in central Benin. Thus, larval habitat has been actively sought and prospected. The physicochemical and chemical (e.g.: fluorine) parameters of the water in these development sites were measured. A total of 38 larval habitats were identified and surveyed. Most larval habitats are in the immediate environment of human populations. The characterization of the substrate at the level of these development sites has informed us about the ecological requirements of larval density. Indeed, the analysis of the results obtained shows that the individual increase in fluoride ions, salinity, turbidity, suspended matter or exposure to the sun of the site favors the increase in the number of deposits of development collected. On the other hand, the opposite effect is obtained with increasing chloride ions or hydrogen potential. In addition, the combined action of fluoride ions and a few other elements inhibits the density of larvae in the stations. These results show that to limit or inhibit the density of larvae in this region, the presence of fluoride ions combined with either a high concentration of chloride ions and / or a high amount of salinity is required.

Keywords

fluorine, fluoride, larval habitat, mosquitoes, Dassa-Zoumè

Copyright

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References

[1]  WHO, (2021). World malaria report. ISBN 978-92-4-004049-6 (e-book) / ISBN 978-92-4-004050-2 (HB).
 
[2]  Gouagna L. C., Dehecq J. S. and Girod R., (2010). Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island-multi-year trend analysis of historical records from 1996-2009. Parasit Vectors, 4: 121.
 
[3]  Bousema T. and Drakeley C., (2011). Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination. ASM Journals / Clinical Microbiology Reviews, 24 (02).
 
[4]  Fontenille D. and Toto J. C., (2005). Vecteurs du paludisme: du terrain à la génétique moléculaire, recherches en Afrique, 283-290.
 
[5]  Kearney M., Porter W. P., Williams C., Ritchie S. and Hoffmann A., (2009). Integrating biophysical models and evolutionary theory to predict climatic impacts on species’ ranges: the dengue mosquito Aedes aegypti in Australia. British ecological society / Avignon University, 23(03): 528-538.
 
[6]  Muteroa C.M., Ng’ang’a P.N., Wekoyela P., Githure J. and Konradsen F., (2004). Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields. ScienceDirect, 89(02): 187-192.
 
[7]  Piyaratnea M.K., Amerasinghea F.P., Amerasinghea P.H. and Konradsen F., (2005). Physico-chemical characteristics of Anopheles culicifacies and Anopheles varuna breeding water in a dry zone stream in Sri Lanka. J Vect Borne Dis 42: 61-67.
 
[8]  Varun T., Ruchi Y., Kumar S. A., Vivek T., Shweta Y., Veer V. and Devanathan S., (2013). Larvicidal activity of leaf extract of some weeds against malaria vector Anopheles stephensi. International Journal of Malaria Research and Reviews, 1(3): 35-39.
 
[9]  Gillies M. T. and De Meillon B., (1968). The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). 54 (19): 343-346.
 
[10]  Ndenga B. A., Simbauni J. A., Mbugi J. P. and Githeko A. K., (2012). Physical, Chemical and Biological Characteristics in Habitats of High and Low Presence of Anopheline Larvae in Western Kenya Highlands.
 
[11]  OMS, (2018). Rapport sur le paludisme dans le monde en clin d’œil, 95p.
 
[12]  ADEGE, Rapport de l’atelier de l’Agence nationale pour la Démoustication et la Gestion des Espaces naturels, 2012, 15p.
 
[13]  Silver J. B., (2007). Mosquito ecology, Field sampling methods. Springer P.O. Box 17, 3300 AA Dordrecht, The Netherlands. ISBN 978-1-4020-6665-8 (HB) / ISBN 978-1-4020-6666-5 (e-book).
 
[14]  Louah A., (1995). Ecologie des Culicidae (Diptères) et état du paludisme dans la péninsule de Tanger. Thèse d’Etat ès Sciences, Univ. Abdelmalek Essaadi, Fac. Sci. Tétouan, 266p.
 
[15]  Tia E., Gbalegba N. G. C., M’bra K. R., Kaba A., Boby O. A. M., Koné M., Chouaibou M., Koné B. et Koudou G. B., (2016). Etude du niveau de production larvaire d’Anopheles gambiae s.l. (Diptera : Culicidae) dans les différents types de gîtes à Oussou-yaokro au Centre-Ouest et à Korhogo, au Nord (Côte d’Ivoire). Journal of Applied Biosciences, 105: 10170-10182.
 
[16]  Dambach P., Sie A., Lacaux J. P., Vignolles C., Machault V. and Sauerborn R., (2009). Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso. Glob Health Action, 159-186.
 
[17]  Doby J. M. and Mouchet J., (1957). Ecologie larvaire de quelques espèces de culicidés dans la région de Yaoundé, Sud Cameroun. Bull. Soc. Path, 945-957.
 
[18]  Mogi M., Okasawa T., Miyagi I., Sucharit S., Tumrasvin W., Deesin T. and Khamboonruang C., (1986). Development and survival of anopheline immatures in rice fields in northern Thailand. J. Medical Entomol., 23, 244-250.
 
[19]  De Alwis R. E. and Munasinghe C. H., (1971). Hydrogen-ion concentration in breeding habitats of Culex pipiens Fatigam (Wied.) and associated mosquitoes. Bull. Org. mond. Santé, 45: 853-854.
 
[20]  Rageau J. and Adam J. P., (1952). Culicidae du Cameroun. Ann. Parasit. Tome XXVII, 6: 610-635.
 
[21]  Betsi A. N., Tchicaya E. S. and Koudou B. G., (2012). High proliferation of An. gambiae and An. funestus larvae in irrigated and non-irrigated rice fields in the Western Forest region of Côte-d’Ivoire. Bulletin de la Société de pathologie exotique, 105: 220-229.
 
[22]  Himmi O., Trari B., El Agbani M. A. et Dakki M., (1998). Contribution à la connaissance de la cinétique et des cycles biologiques des Moustiques (Diptera, Culicidae) dans la région de Rabat-Kénitra (Maroc). Bull. Inst. Sci., Rabat, 21: 71-79.